美文网首页影像组学影像组学学习笔记
影像组学学习笔记(35)-基于2D超声影像的影像组学特征提取

影像组学学习笔记(35)-基于2D超声影像的影像组学特征提取

作者: 北欧森林 | 来源:发表于2021-01-17 20:16 被阅读0次

    本笔记来源于B站Up主: 有Li 的影像组学系列教学视频
    本节(35)主要介绍: 2D超声影像组学的特征提取
    视频中李博士情境再现了小白研究者可能碰到的各种技术难题,并演示了解决这些问题的思路。

    1. dicom格式的2D 超声图像转为压缩的nifti格式,将其命名为test.nii.gz; 勾画ROI后同样保存为压缩的nifti格式,命名为mask.nii.gz

      Fig1.jpg
    2. 尝试提取影像学特征:

    import radiomics 
    from radiomics import featureextractor
    
    imageFile = "/Users/Mac/Documents/JianShuNotes/2D_Ultrasound/test.nii.gz"
    maskFile = "/Users/Mac/Documents/JianShuNotes/2D_Ultrasound/mask.nii.gz"
    extractor = featureextractor.RadiomicsFeatureExtractor()
    featureVector = extractor.execute(imageFile, maskFile)
    #print(featureVector.items())
    for featureName in featureVector.keys():
        print("%s: %s" % (featureName, featureVector[featureName]))
    

    出现了如下报错信息:

    sitk::ERROR: Pixel type: vector of 8-bit unsigned integer is not supported in 3D byN3itk6simple26LabelStatisticsImageFilterE

    1. 按照提示,有可能是数据格式的问题。回到源代码,修改文件相应的格式,将其命名为 test1.nii.gz
    import SimpleITK as sitk
    import numpy as np
    
    folderPath = "/Users/Mac/Documents/JianShuNotes/2D_Ultrasound/"
    
    reader = sitk.ImageSeriesReader()
    dicom_names = reader.GetGDCMSeriesFileNames(folderPath)
    reader.SetFileNames(dicom_names)
    image = reader.Execute()
    
    image_arr = sitk.GetArrayFromImage(image) # Note: order:z, y, x !!
    size = image.GetSize()
    origin = image.GetOrigin() #order: x, y, z
    spacing = image.GetSpacing() #order:x, y, z
    direction = image.GetDirection()
    #print(spacing) 
    
    pixelType = sitk.sitkInt8 #注意这里是Int8
    image_new = sitk.Image(size,pixelType)
    
    #image_arr_new = image_arr[:,:,::-1] #镜像翻转操作
    image_arr_new = image_arr
    #print(image_arr_new.shape)
    
    image_new = sitk.GetImageFromArray(image_arr_new)
    image_new.SetDirection(direction)
    image_new.SetSpacing(spacing)
    image_new.SetOrigin(origin)
    sitk.WriteImage(image_new,folderPath + "test1.nii.gz")
    
    1. 将步骤[2]中的test.nii.gz替换为test1.nii.gz,再次执行该步骤
      此时又出现了报错信息:

    sitk::ERROR: Input "labelImage" for "LabelStatisticsImageFilter" has dimension of 3 which does not match the primary input's dimension of 2!

    1. 执行 print(image_arr_new.shape) 后显示为:

    (1, 900, 1600, 3)

    Notes: 这里涉及python读入nifti文件的格式问题,其顺序为 z,y,x(对应这里的1,900,1600); 这里的3为不同的slice

    1. 探索这个“3”代表的意义:将每一个slice导出来,通过对比发现其中的端倪。执行代码:
    image_arr_new = image_arr[:,:,:,0]
    #image_arr_new = image_arr[:,:,:,1]
    #image_arr_new = image_arr[:,:,:,2]
    #print(image_arr_new.shape)
    
    image_new = sitk.GetImageFromArray(image_arr_new)
    image_new.SetDirection(direction)
    image_new.SetSpacing(spacing)
    image_new.SetOrigin(origin)
    sitk.WriteImage(image_new,folderPath + "test-slice0.nii.gz")
    #sitk.WriteImage(image_new,folderPath + "test-slice1.nii.gz")
    #sitk.WriteImage(image_new,folderPath + "test-slice2.nii.gz")
    
    1. test-slice0.nii.gztest-slice1.nii.gztest-slice2.nii.gz在软件中打开,查看它们之间的差异(肉眼似乎看不出啥区别)
    2. 使用写代码的方法来探索test-slice0.nii.gztest-slice1.nii.gztest-slice2.nii.gz之间的差异(视频里李博士演示了对比前二者)
    import SimpleITK as sitk
    import numpy as np
    
    slicer0 = sitk.ReadImage("test-slice0.nii.gz")
    slicer1 = sitk.ReadImage("test-slice1.nii.gz")
    
    slicer0_arr = sitk.GetArrayFromImage(slicer0)
    slicer1_arr = sitk.GetArrayFromImage(slicer1)
    
    comp = slicer0_arr == slicer1_arr
    print(comp)
    
    Fig2.jpg
    1. 将差异的部分保存为影像导出
    image_arr = slicer0_arr - slicer1_arr
    image_arr[image_arr != 0] = 1
    
    size = slicer0.GetSize()
    origin = slicer0.GetOrigin() #order: x, y, z
    spacing = slicer0.GetSpacing() #order:x, y, z
    direction = slicer0.GetDirection()
    
    image_new = sitk.GetImageFromArray(image_arr)
    image_new.SetDirection(direction)
    image_new.SetSpacing(spacing)
    image_new.SetOrigin(origin)
    sitk.WriteImage(image_new,"comp.nii.gz")
    
    1. 此时在软件中打开comp.nii.gz文件,查看差异(在于右下角的水印部分)(视频中是左下角的水印)。换句话说,这3张test-slice0.nii.gztest-slice1.nii.gztest-slice2.nii.gz是一样的,差别仅在于右下角的水印。所以,后续的工作只需选择其中的一个即可。
    2. 再次查看test-slice0.nii.gz和mask文件,发现mask文件和源文件不对应。mask.nii.gz是基于test.nii.gz文件画出并保存的,但是在test.nii.gz保存为test1.nii.gz时存在一个翻转(我没有搞明白这一点),所以应重新保存一下mask文件
      Fig3.jpg
    import SimpleITK as sitk
    import numpy as np
    
    folderPath = "/Users/Mac/Documents/JianShuNotes/2D_Ultrasound/"
    mask = sitk.ReadImage('mask.nii.gz')
    mask_arr = sitk.GetArrayFromImage(mask)
    
    reader = sitk.ImageSeriesReader()
    dicom_names = reader.GetGDCMSeriesFileNames(folderPath)
    reader.SetFileNames(dicom_names)
    image = reader.Execute()
    
    image_arr = sitk.GetArrayFromImage(image) # Note: order:z, y, x !!
    size = image.GetSize()
    origin = image.GetOrigin() #order: x, y, z
    spacing = image.GetSpacing() #order:x, y, z
    direction = image.GetDirection()
    
    pixelType = sitk.sitkInt8 #注意这里是Int8
    image_new = sitk.Image(size,pixelType)
    mask_new = sitk.Image(size,pixelType)
    
    #image_arr_new = image_arr[:,:,::-1] #镜像翻转操作
    image_arr_new = image_arr[:,:,:,0]
    print(image_arr.shape)
    
    image_new = sitk.GetImageFromArray(image_arr_new)
    image_new.SetDirection(direction)
    image_new.SetSpacing(spacing)
    image_new.SetOrigin(origin)
    
    mask_new = sitk.GetImageFromArray(mask_arr) # 视频里勘误为mask_new,其实就应该是mask_arr, print二者可以看出区别来
    mask_new.SetDirection(direction)
    mask_new.SetSpacing(spacing)
    mask_new.SetOrigin(origin)
    
    sitk.WriteImage(image_new,"test0.nii.gz")
    sitk.WriteImage(mask_new,"mask0.nii.gz")
    
    
    Fig4.jpg
    1. 再次尝试提取影像组学特征(代码[2]),发现代码可以运行。但是这里有一个隐藏的bug,就是mask文件虽然重新保存了,但是并不能和原来的位置匹配。通过软件查看图像可以发现其中的区别


      Fig5.jpg
    2. 再次回到原始代码里查找问题来源

    import SimpleITK as sitk
    import numpy as np
    
    folderPath = "/Users/Mac/Documents/JianShuNotes/2D_Ultrasound/"
    mask = sitk.ReadImage('mask.nii.gz')
    mask_arr = sitk.GetArrayFromImage(mask)
    
    #reader = sitk.ImageSeriesReader()
    #dicom_names = reader.GetGDCMSeriesFileNames(folderPath)
    #reader.SetFileNames(dicom_names)
    #image = reader.Execute()
    
    image = sitk.ReadImage('test.nii.gz')
    
    image_arr = sitk.GetArrayFromImage(image) # Note: order:z, y, x !!
    size = image.GetSize()
    origin = image.GetOrigin() #order: x, y, z
    spacing = image.GetSpacing() #order:x, y, z
    direction = image.GetDirection()
    
    pixelType = sitk.sitkInt8 #注意这里是Int8
    image_new = sitk.Image(size,pixelType)
    mask_new = sitk.Image(size,pixelType)
    
    #image_arr_new = image_arr[:,:,::-1] #镜像翻转操作
    image_arr_new = image_arr[:,:,:,0]
    print(image_arr.shape)
    
    image_new = sitk.GetImageFromArray(image_arr_new)
    image_new.SetDirection(direction)
    image_new.SetSpacing(spacing)
    image_new.SetOrigin(origin)
    
    mask_new = sitk.GetImageFromArray(mask_arr)
    mask_new.SetDirection(direction)
    mask_new.SetSpacing(spacing)
    mask_new.SetOrigin(origin)
    
    sitk.WriteImage(image_new,"test0.nii.gz")
    sitk.WriteImage(mask_new,"mask0.nii.gz")
    
    1. 历尽周折,现在test0.nii.gz文件和mask0.nii.gz文件相匹配了!可以愉快地提取影像组学特征了
    Fig6.jpg
    import radiomics 
    from radiomics import featureextractor
    
    imageFile = "/Users/Mac/Documents/JianShuNotes/2D_Ultrasound/test0.nii.gz"
    maskFile = "/Users/Mac/Documents/JianShuNotes/2D_Ultrasound/mask0.nii.gz"
    extractor = featureextractor.RadiomicsFeatureExtractor()
    featureVector = extractor.execute(imageFile, maskFile)
    #print(featureVector.items())
    for featureName in featureVector.keys():
        print("%s: %s" % (featureName, featureVector[featureName]))
    
    Fig7.jpg

    相关文章

      网友评论

        本文标题:影像组学学习笔记(35)-基于2D超声影像的影像组学特征提取

        本文链接:https://www.haomeiwen.com/subject/qlfkaktx.html