过拟合

作者: 小白之白小明 | 来源:发表于2019-01-08 19:55 被阅读4次

参考文献 https://mp.weixin.qq.com/s/6P3sO5V6zWHU7h14ev1qaQ


反过来,如果数据不是足够复杂,似乎小一点的网络更好,可以防止过拟合。然而并非如此,防止神经网络的过拟合有很多方法(L2正则化,dropout和输入噪音等),后面会详细讨论。在实践中,使用这些方法来控制过拟合比减少网络神经元数目要好得多。

原因是小网络更难使用梯度下降等局部方法来进行训练:虽然小型网络的损失函数的局部极小值更少,也比较容易收敛到这些局部极小值,但是这些最小值一般都很差,损失值很高。相反,大网络拥有更多的局部极小值,但就实际损失值来看,这些局部极小值表现更好,损失更小。因为神经网络是非凸的,就很难从数学上研究这些特性。即便如此,还是有一些文章尝试对这些目标函数进行理解,例如The Loss Surfaces of Multilayer Networks 这篇论文。在实际中,你将发现如果训练的是一个小网络,那么最终的损失值将展现出多变性:某些情况下运气好会收敛到一个好的地方,某些情况下就收敛到一个不好的极值。从另一方面来说,如果训练一个大的网络,你将发现许多不同的解决方法,但是最终损失值的差异将会小很多。所有的解决办法都差不多,而且对于随机初始化参数好坏的依赖也会小很多。

需要记住的是:不应该因为害怕出现过拟合而使用小网络。相反,应该进尽可能使用大网络,然后使用正则化技巧来控制过拟合.

参考:神经网络七:神经网络设置层的数量和尺寸

相关文章

  • 机器学习的相关概念

    一、概念 拟合,欠拟合,过拟合拟合:测试机数据对于模型的匹配度,趋于欠拟合和过拟合之间;欠拟合:学到的很少;过拟合...

  • 第三天-过拟合欠拟合及其解决方案,梯度消失梯度爆炸,

    过拟合、欠拟合及其解决方案 过拟合、欠拟合的概念 权重衰减 丢弃法 模型选择、过拟合和欠拟合 训练误差和泛化误差 ...

  • 过拟合、欠拟合及其解决方案 2020-02-18

    过拟合、欠拟合及其解决方案 过拟合、欠拟合的概念 权重衰减 丢弃法 模型选择、过拟合和欠拟合 训练误差和泛化误差 ...

  • 动手学深度学习(四) 过拟合欠拟合及其解决方案

    过拟合、欠拟合及其解决方案 过拟合、欠拟合的概念 权重衰减 丢弃法 模型选择、过拟合和欠拟合 训练误差和泛化误差 ...

  • 2020-02-19

    过拟合、欠拟合及其解决方案 过拟合、欠拟合的概念 权重衰减 丢弃法 模型选择、过拟合和欠拟合 训练误差和泛化误差 ...

  • 机器学习基础:过拟合、欠拟合、梯度消失与爆炸相关

    过拟合、欠拟合及其解决方案 过拟合、欠拟合的概念 权重衰减 丢弃法 模型选择、过拟合和欠拟合 训练误差和泛化误差 ...

  • 过拟合、欠拟合

    过拟合、欠拟合及其解决方案 过拟合、欠拟合的概念 权重衰减 丢弃法 模型选择、过拟合和欠拟合 训练误差和泛化误差 ...

  • 2020-02-14

    过拟合、欠拟合及其解决方案 过拟合、欠拟合的概念 权重衰减 丢弃法 模型选择、过拟合和欠拟合 训练误差和泛化误差 ...

  • task03

    过拟合、欠拟合及其解决方案 过拟合与欠拟合 欠拟合 过拟合 解决方案 权重衰减 L2 范数正则化 范数正则化在模型...

  • 动手学深度学习-02打卡

    过拟合、欠拟合及其解决方案 1.过拟合、欠拟合的概念2.权重衰减3.丢弃法 模型选择、过拟合和欠拟合 训练误差和泛...

网友评论

      本文标题:过拟合

      本文链接:https://www.haomeiwen.com/subject/qqnbrqtx.html