美文网首页
【算法题】2906. 构造乘积矩阵

【算法题】2906. 构造乘积矩阵

作者: 程序员小2 | 来源:发表于2023-10-18 07:47 被阅读0次

    题目:

    给你一个下标从 0 开始、大小为 n * m 的二维整数矩阵 grid ,定义一个下标从 0 开始、大小为 n * m 的的二维矩阵 p。如果满足以下条件,则称 p 为 grid 的 乘积矩阵 :

    对于每个元素 p[i][j] ,它的值等于除了 grid[i][j] 外所有元素的乘积。乘积对 12345 取余数。
    返回 grid 的乘积矩阵。

    示例 1:

    输入:grid = [[1,2],[3,4]]
    输出:[[24,12],[8,6]]
    解释:p[0][0] = grid[0][1] * grid[1][0] * grid[1][1] = 2 * 3 * 4 = 24
    p[0][1] = grid[0][0] * grid[1][0] * grid[1][1] = 1 * 3 * 4 = 12
    p[1][0] = grid[0][0] * grid[0][1] * grid[1][1] = 1 * 2 * 4 = 8
    p[1][1] = grid[0][0] * grid[0][1] * grid[1][0] = 1 * 2 * 3 = 6
    所以答案是 [[24,12],[8,6]] 。
    示例 2:

    输入:grid = [[12345],[2],[1]]
    输出:[[2],[0],[0]]
    解释:p[0][0] = grid[0][1] * grid[0][2] = 2 * 1 = 2
    p[0][1] = grid[0][0] * grid[0][2] = 12345 * 1 = 12345. 12345 % 12345 = 0 ,所以 p[0][1] = 0
    p[0][2] = grid[0][0] * grid[0][1] = 12345 * 2 = 24690. 24690 % 12345 = 0 ,所以 p[0][2] = 0
    所以答案是 [[2],[0],[0]] 。

    提示:

    1 <= n == grid.length <= 10^5
    1 <= m == grid[i].length <= 10^5
    2 <= n * m <= 10^5
    1 <= grid[i][j] <= 10^9

    java代码:

    class Solution {
        public int[][] constructProductMatrix(int[][] grid) {
            final int MOD = 12345;
            int n = grid.length, m = grid[0].length;
            int[][] p = new int[n][m];
    
            long suf = 1; // 后缀乘积
            for (int i = n - 1; i >= 0; i--) {
                for (int j = m - 1; j >= 0; j--) {
                    p[i][j] = (int) suf; // p[i][j] 先初始化成后缀乘积
                    suf = suf * grid[i][j] % MOD;
                }
            }
    
            long pre = 1; // 前缀乘积
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < m; j++) {
                    p[i][j] = (int) (p[i][j] * pre % MOD); // 然后再乘上前缀乘积
                    pre = pre * grid[i][j] % MOD;
                }
            }
    
            return p;
        }
    }
    

    相关文章

      网友评论

          本文标题:【算法题】2906. 构造乘积矩阵

          本文链接:https://www.haomeiwen.com/subject/qsoqidtx.html