美文网首页Python数学建模
Python数模笔记-PuLP库(1)线性规划入门

Python数模笔记-PuLP库(1)线性规划入门

作者: youcans | 来源:发表于2021-04-27 14:43 被阅读0次

1、什么是线性规划

线性规划(Linear programming),在线性等式或不等式约束条件下求解线性目标函数的极值问题,常用于解决资源分配、生产调度和混合问题。例如:

max     fx = 2*x1 + 3*x2 - 5*x3
s.t.    x1 + 3*x2 + x3 <= 12
        2*x1 - 5*x2 + x3 >= 10
        x1 + x2 + x3 = 7
        x1, x2, x3 >=0

线性规划问题的建模和求解,通常按照以下步骤进行:

(1)问题定义,确定决策变量、目标函数和约束条件;
(2)模型构建,由问题描述建立数学方程,并转化为标准形式的数学模型;
(3)模型求解,用标准模型的优化算法对模型求解,得到优化结果;

欢迎关注 [Youcans 原创系列](https://www.jianshu.com/u/5df8372991c5),数模笔记每周更新

Python数模笔记-PuLP线性规划
Python数模笔记-StatsModels统计回归
Python数模笔记-Sklearn机器学习
Python数模笔记-NetworkX图论
Python数模笔记-模拟退火算法


2、PuLP 库求解线性规划

PuLP是一个开源的第三方工具包,可以求解线性规划、整数规划、混合整数规划问题。
  下面以该题为例讲解 PuLP 求解线性规划问题的步骤:
(0)导入 PuLP库函数

    import pulp

(1)定义一个规划问题

    MyProbLP = pulp.LpProblem("LPProbDemo1", sense=pulp.LpMaximize)

pulp.LpProblem 是定义问题的构造函数。
  "LPProbDemo1"是用户定义的问题名(用于输出信息)。
  参数 sense 用来指定求最小值/最大值问题,可选参数值:LpMinimize、LpMaximize 。

(2)定义决策变量

    x1 = pulp.LpVariable('x1', lowBound=0, upBound=7, cat='Continuous') 
    x2 = pulp.LpVariable('x2', lowBound=0, upBound=7, cat='Continuous')
    x3 = pulp.LpVariable('x3', lowBound=0, upBound=7, cat='Continuous') 

pulp.LpVariable 是定义决策变量的函数。
  'x1' 是用户定义的变量名。
  参数 lowBound、upBound 用来设定决策变量的下界、上界;可以不定义下界/上界,默认的下界/上界是负无穷/正无穷。本例中 x1,x2,x3 的取值区间为 [0,7]。
  参数 cat 用来设定变量类型,可选参数值:'Continuous' 表示连续变量(默认值)、' Integer ' 表示离散变量(用于整数规划问题)、' Binary ' 表示0/1变量(用于0/1规划问题)。

(3)添加目标函数

    MyProbLP += 2*x1 + 3*x2 - 5*x3      # 设置目标函数

添加目标函数使用 "问题名 += 目标函数式" 格式。
(4)添加约束条件

    MyProbLP += (2*x1 - 5*x2 + x3 >= 10)  # 不等式约束
    MyProbLP += (x1 + 3*x2 + x3 <= 12)  # 不等式约束
    MyProbLP += (x1 + x2 + x3 == 7)  # 等式约束

添加约束条件使用 "问题名 += 约束条件表达式" 格式。
  约束条件可以是等式约束或不等式约束,不等式约束可以是 小于等于 或 大于等于,分别使用关键字">="、"<="和"=="。
(5)求解

    MyProbLP.solve()
    print("Status:", pulp.LpStatus[MyProbLP.status]) # 输出求解状态
    for v in MyProbLP.variables():
        print(v.name, "=", v.varValue)  # 输出每个变量的最优值
    print("F(x) = ", pulp.value(MyProbLP.objective))  #输出最优解的目标函数值    

solve() 是求解函数。PuLP默认采用 CBC 求解器来求解优化问题,也可以调用其它的优化器来求解,如:GLPK,COIN CLP/CBC,CPLEX,和GUROBI,但需要另外安装。


3、Python程序和运行结果

完整的程序代码如下:

import pulp
MyProbLP = pulp.LpProblem("LPProbDemo1", sense=pulp.LpMaximize)
x1 = pulp.LpVariable('x1', lowBound=0, upBound=7, cat='Continuous') 
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7, cat='Continuous') 
x3 = pulp.LpVariable('x3', lowBound=0, upBound=7, cat='Continuous') 
MyProbLP += 2*x1 + 3*x2 - 5*x3      # 设置目标函数
MyProbLP += (2*x1 - 5*x2 + x3 >= 10)  # 不等式约束
MyProbLP += (x1 + 3*x2 + x3 <= 12)  # 不等式约束
MyProbLP += (x1 + x2 + x3 == 7)  # 等式约束
MyProbLP.solve()
print("Status:", pulp.LpStatus[MyProbLP.status]) # 输出求解状态
for v in MyProbLP.variables():
    print(v.name, "=", v.varValue)  # 输出每个变量的最优值
print("F(x) = ", pulp.value(MyProbLP.objective))  #输出最优解的目标函数值

程序运行结果如下:

Welcome to the CBC MILP Solver 
Version: 2.9.0 
Build Date: Feb 12 2015 

Status: Optimal
x1 = 6.4285714
x2 = 0.57142857
x3 = 0.0
F(x) =  14.57142851


版权说明:
原创作品
Copyright 2021 YouCans, XUPT
Crated:2021-04-28

欢迎关注 [Youcans 原创系列](https://www.jianshu.com/u/5df8372991c5),数模笔记每周更新

Python数模笔记-PuLP线性规划
Python数模笔记-StatsModels统计回归
Python数模笔记-Sklearn机器学习
Python数模笔记-NetworkX图论
Python数模笔记-模拟退火算法

相关文章

网友评论

    本文标题:Python数模笔记-PuLP库(1)线性规划入门

    本文链接:https://www.haomeiwen.com/subject/qvyvrltx.html