美文网首页
R 样本量和检验效能估计

R 样本量和检验效能估计

作者: Thinkando | 来源:发表于2018-12-20 03:36 被阅读33次
    #4.1 单样本
    library(pwr)
    u1=3.3
    u2=3
    s2=0.112
    d=0.03/s2
    pwr.t.test(d=d,sig.level = 0.05,power=0.90,type="one.sample",alternative = "two.sided")
    pwr.t.test(n=100,d=d,sig.level = 0.05,type="one.sample",alternative = "two.sided")
    #4.1.2 双样本
    d=0.6/1.3
    pwr.t.test(d=d,sig.level = 0.05,type="two.sample",power = 0.90,alternative = "two.sided")
    pwr.t.test(n=80,d=d,sig.level = 0.05,type="two.sample",alternative = "two.sided")
    #4.1.3 配对样本
    d=0.3/0.78
    pwr.t.test(d=d,sig.level = 0.05,type="paired",power = 0.90,alternative = "two.sided")
    pwr.t.test(n=60,d=d,sig.level = 0.05,type="paired",alternative = "two.sided")
    #4.3 方差分析
    f=0.427983
    pwr.anova.test(k=3,f=f,sig.level = 0.05,power=0.90)
    pwr.anova.test(k=3,n=10,f=f,sig.level = 0.05)
    #4.4 相关分析
    pwr.r.test(r=0.7,sig.level = 0.05,power=0.80,alternative="two.sided")
    pwr.r.test(n=10,r=0.7,sig.level = 0.05,alternative="two.sided")
    #4.5 线性模型
    pwr.f2.test(u=3,f2=0.0769,sig.level = 0.05,power = 0.90)
    #4.6 分类资料的样本量估计
    #4.6.1 单样本
    pwr.2p.test(h=ES.h(0.12,0.10),sig.level = 0.05,power=0.9,alternative = "two.sided")
    #4.6.2 两样本
    pwr.2p.test(h=ES.h(0.45,0.25),sig.level = 0.05,power=0.9,alternative = "two.sided")
    pwr.2p.test(h=ES.h(0.45,0.25),sig.level = 0.05,n=100,alternative = "two.sided")
    #4.6.3 配对
    pwr.2p.test(h=ES.h(0.5217,0.1538),sig.level = 0.05,power=0.9,alternative = "two.sided")
    pwr.2p.test(h=ES.h(0.5217,0.1538),sig.level = 0.05,n=20,alternative = "two.sided")
    

    相关文章

      网友评论

          本文标题:R 样本量和检验效能估计

          本文链接:https://www.haomeiwen.com/subject/rerekqtx.html