美文网首页AndroidAndroid开发Android开发
Android基础之消息处理机制

Android基础之消息处理机制

作者: xxxxcoder | 来源:发表于2016-04-20 11:15 被阅读812次

    简介

    消息驱动是一种进程/线程的运行模式,内部或者外部的消息事件被放到进程/线程的消息队列中按序处理是现在的操作系统普遍采用的机制.Android也是采用了消息驱动的机制来处理各种外部按键,触屏,系统Intent,广播事件等消息.

    Android的消息队列是线程相关的,每启动一个线程,都可以在内部创建一个消息队列,然后在消息队列中不断循环检查是否有新的消息需要处理,如果有,则对该消息进行处理,如果没有,线程就进入休眠状态直到有新的消息需要处理为止.


    数据模型

    Android中与消息机制相关的类主要有Looper,MessageQueue,Handler,Message,相关的代码主要在以下文件中:

    • frameworks/base/core/java/android/os/Looper.java
    • frameworks/base/core/java/android/os/Message.java
    • frameworks/base/core/java/android/os/MessageQueue.java
    • frameworks/base/core/java/android/os/Handler.java
    • frameworks/base/core/jni/android_os_MessageQueue.cpp
    • system/core/libutils/Looper.cpp
    • Looper
      Looper对象是用来创建消息队列并进入消息循环处理的.每个线程只能有一个Looper对象,同时对应着一个MessageQueue,发送到该线程的消息都将存放在该队列中,并由Looper循环处理。Android默认只为主线程)(UI线程)创建了Looper,所以当我们新建线程需要使用消息队列时必须手动创建Looper.
    • MessageQueue
      MessageQueue即消息队列,由Looper创建管理,一个Looper对象对应一个MessageQueue对象.
    • Handler
      Handler是消息的接收与处理者,Handler将Message添加到消息队列,同时也通过Handler的回调方法handleMessage()处理对应的消息.一个Handler对象只能关联一个Looper对象,但多个Handler对象可以关联到同一个Looper.默认情况下Handler会关联到实例化Handler线程的Lopper,也可以通过Handler的构造函数的Looper参数指定Handler关联到某个线程的Looper,即发送消息到某个指定线程并在该线程中回调Handler处理该消息.
    • Message
      Message是消息的载体,Parcelable的派生类,通过其成员变量target关联到Handler对象.

    它们之间关系如下图示:

    Handler,Looper,MessageQueue之间的关系Handler,Looper,MessageQueue之间的关系

    在代码中我们一般如下使用线程的消息机制:

    class LooperThread extends Thread {
          public Handler mHandler;
    
          public void run() {
              Looper.prepare();
    
              mHandler = new Handler() {
                  public void handleMessage(Message msg) {
                      // process incoming messages here
                  }
              };
    
              Looper.loop();
          }
    }
    

    线程消息队列的创建

    线程的消息队列通过Looper创建并维护的,主线程中调用Looper.prepareMainLooper(),其他子线程中调用Looper.prepare()来创建消息队列.一个线程多次调用prepareMainLooper()或prepare()将会抛出异常.

    在介绍消息队列创建之前,首先了解一下Looper与MessageQueue,再看消息队列创建的流程.

    1. Looper类的主要成员变量与方法如下:
    public final class Looper {
          static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
          private static Looper sMainLooper;  
          final MessageQueue mQueue;
          final Thread mThread;
    
          public static void prepare() {...}
          private static void prepare(boolean quitAllowed) {...}
          public static void prepareMainLooper() {...}
          public static Looper getMainLooper() {...}
          public static void loop() {...}
    }
    
    • sThreadLocal是静态成员变量,用于保存线程私有的Looper对象
    • sMainLooper是主线程的Looper对象.在prepareMainLooper()中赋值,可通过调用getMainLooper获取
    • mQueue即消息队列,在Looper构造函数中初始化
    • mThread即Looper所在的线程
    1. MessageQueue类的主要成员变量与方法如下:
    public final class MessageQueue {
          private final boolean mQuitAllowed;
          private long mPtr;
          Message mMessages;
    
          MessageQueue(boolean quitAllowed) {...}
          boolean enqueueMessage(Message msg, long when) {...}
          Message next() {...}
    }
    
    • mQuitAllowed代表是否允许退出消息循环,主线程中默认为false,子线程默认false
    • mPtr保存的是NativeMessageQueue的地址,通过该地址就可以找到java层MessageQueue所对应native的MessageQueue.
    • mMessages即消息队列,通过mMessages可以遍历整个消息队列
    1. 消息队列的创建:
      消息队列的创建从Looper.prepare()/Looper.prepareMainLooper()开始
    public static void prepare() {
          prepare(true);
    }
    
    public static void prepareMainLooper() {
          prepare(false);
          synchronized (Looper.class) {
              if (sMainLooper != null) {
                  throw new IllegalStateException("The main Looper has already been prepared.");
              }
              sMainLooper = myLooper();
          }
    }
    
    private static void prepare(boolean quitAllowed) {
          if (sThreadLocal.get() != null) {
              throw new RuntimeException("Only one Looper may be created per thread");
          }
          sThreadLocal.set(new Looper(quitAllowed));
    }
    
    private Looper(boolean quitAllowed) {
          mQueue = new MessageQueue(quitAllowed);
          mThread = Thread.currentThread();
    }
    

    通过调用prepare()或prepareMainLooper()创建Looper对象,然后保存到sThreadLocal中,sThreadLocal是模板类ThreadLocal<T>,它通过线程ID与对象关联的方式实现线程本地存储功能.这样放入sThreadLocal对象中的Looper对象就与创建它的线程关联起来了.所以可以从sThreadLocal中获取到保存的Looper对象:

    public static @Nullable Looper myLooper() {
          return sThreadLocal.get();
    }
    

    主线程的Loopper对象保存在sMainLooper,可以通过getMainLooper获取

    public static Looper getMainLooper() {
          synchronized (Looper.class) {
              return sMainLooper;
          }
    }
    

    创建Looper同时会创建Looper关联的MessageQueue并赋值给成员变量mQueue,接下来再看new MessageQueue(quitAllowed)的过程:

    MessageQueue(boolean quitAllowed) {
          mQuitAllowed = quitAllowed;
          mPtr = nativeInit();
    }
    

    可以看到,直接调用了nativeInit().这个JNI方法定义在android_os_MessageQueue.cpp

    static jlong android_os_MessageQueue_nativeInit(JNIEnv* env, jclass clazz) {
          NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue();
          if (!nativeMessageQueue) {
              jniThrowRuntimeException(env, "Unable to allocate native queue");
              return 0;
          }
    
          nativeMessageQueue->incStrong(env);
          return reinterpret_cast<jlong>(nativeMessageQueue);
    }
    

    nativeInit()中首先创建了nativeMessageQueue,然后又将nativeMessageQueue的地址赋值给java层的mPtr,所以java层的MessageQueue就可以通过mPtr找到nativeMessageQueue了.
    再看new NativeMessageQueue()过程,NativeMessageQueue的构造如下:

    NativeMessageQueue::NativeMessageQueue() : mInCallback(false), mExceptionObj(NULL) {
          mLooper = Looper::getForThread();
          if (mLooper == NULL) {
              mLooper = new Looper(false);
              Looper::setForThread(mLooper);
          }
    }
    

    它首先通过Looper::getForThread()判断当前线程是否已创建过Looper对象,如果没有则创建.注意,这个Looper对象是实现在JNI层的,与上面Java层的Looper是不一样的,不过也是对应的关系.JNI层的Looper对象的创建过程是在Looper.cpp中实现的.

    Looper::Looper(bool allowNonCallbacks) :
            mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false),
            mPolling(false), mEpollFd(-1), mEpollRebuildRequired(false),
            mNextRequestSeq(0), mResponseIndex(0), mNextMessageUptime(LLONG_MAX) {
        mWakeEventFd = eventfd(0, EFD_NONBLOCK);
        LOG_ALWAYS_FATAL_IF(mWakeEventFd < 0, "Could not make wake event fd.  errno=%d", errno);
    
        AutoMutex _l(mLock);
        rebuildEpollLocked();
    }
    

    创建eventfd并赋值给mWakeEventFd,在以前的Android版本上,这里创建的是pipe管道.eventfd是较新的API,被用作一个事件等待/响应,实现了线程之间事件通知.

    void Looper::rebuildEpollLocked() {
        // Close old epoll instance if we have one.
        if (mEpollFd >= 0) {
    #if DEBUG_CALLBACKS
            ALOGD("%p ~ rebuildEpollLocked - rebuilding epoll set", this);
    #endif
            close(mEpollFd);
        }
    
        // Allocate the new epoll instance and register the wake pipe.
        mEpollFd = epoll_create(EPOLL_SIZE_HINT);
        LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance.  errno=%d", errno);
    
        struct epoll_event eventItem;
        memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union
        eventItem.events = EPOLLIN;
        eventItem.data.fd = mWakeEventFd;
        int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem);
        LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake event fd to epoll instance.  errno=%d",
                errno);
    
        for (size_t i = 0; i < mRequests.size(); i++) {
            const Request& request = mRequests.valueAt(i);
            struct epoll_event eventItem;
            request.initEventItem(&eventItem);
    
            int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, request.fd, & eventItem);
            if (epollResult < 0) {
                ALOGE("Error adding epoll events for fd %d while rebuilding epoll set, errno=%d",
                        request.fd, errno);
            }
        }
    }
    

    rebuildEpollLocked中通过epoll_create创建了一个epoll专用的文件描述符,EPOLL_SIZE_HINT表示mEpollFd上能监控的最大文件描述符数.最后调用epoll_ctl监控mWakeEventFd文件描述符的EPOLLIN事件,即当eventfd中有内容可读时,就唤醒当前正在等待的线程.

    C++层的这个Looper对象创建好了之后,就返回到JNI层的NativeMessageQueue的构造函数,再返回到Java层的消息队列MessageQueue的创建过程,最后从Looper的构造函数中返回.线程消息队列的创建过程也就此完成.

    总结一下:

    • 首先在Java层创建了一个Looper对象,然后创建MessageQueue对象mQueue,进入MessageQueue的创建过程
    • MessageQueue在JNI层创建了一个NativeMessageQueue对象,并将这个对象保存在MessageQueue的成员变量mPtr中
    • 在JNI层,创建了NativeMessageQueue对象时,会创建了一个Looper对象,保存在JNI层的NativeMessageQueue对象的成员变量mLooper中,这个对象的作用是,当Java层的消息队列中没有消息时,就使Android应用程序线程进入等待状态,而当Java层的消息队列中来了新的消息后,就唤醒Android应用程序的线程来处理这个消息
    • 关于java层与JNI层的Looper,MessageQueue对象可以这样理解,java层的Looper,MessageQueue主要实现了消息队列发送处理逻辑,而JNI层的主要实现是线程的等待/唤醒.在逻辑上他们还是一一对应的关系,只不过侧重点不同.


      java与jni层Looper,MessageQueue关系java与jni层Looper,MessageQueue关系

    线程消息队列的循环

    当线程消息队列创建完成后,即进入消息队列循环处理过程中,Android消息队列的循环通过Loop.Loop()来实现,整个流程如下图示.


    消息队列循环流程消息队列循环流程

    下面具体来看具体分析

    public static void loop() {
          final Looper me = myLooper();
          if (me == null) {
              throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
          }
          final MessageQueue queue = me.mQueue;
    
          ...
          for (;;) {
              Message msg = queue.next(); // might block
              if (msg == null) {
                  // No message indicates that the message queue is quitting.
                  return;
              }
    
              ...
              msg.target.dispatchMessage(msg);
              ...
          }
    }
    

    进入loop前,首先通过myLooper()拿到前面创建的Looper对象,如果为null将会抛出异常,这也就是为什么必须在Looper.loop()之前调用Looper.prepare()或者Looper.prepareMainLooper()的原因.接下来通过me.mQueue拿到MessageQueue对象,而后进入到无尽循环处理中.在循环中通过queue.next()从队列中取消息,再调用msg.target.dispatchMessage(msg)处理.下面看一下queue.next()流程.

    Message next() {
          final long ptr = mPtr;
          if (ptr == 0) {
              return null;
          }
    
          int pendingIdleHandlerCount = -1;
          int nextPollTimeoutMillis = 0;
          for (;;) {
              if (nextPollTimeoutMillis != 0) {
                  Binder.flushPendingCommands();
              }
    
              nativePollOnce(ptr, nextPollTimeoutMillis);
    
              synchronized (this) {
                  final long now = SystemClock.uptimeMillis();
                  Message prevMsg = null;
                  Message msg = mMessages;
                  if (msg != null && msg.target == null) {
                      do {
                          prevMsg = msg;
                          msg = msg.next;
                      } while (msg != null && !msg.isAsynchronous());
                  }
                  if (msg != null) {
                      if (now < msg.when) {
                          nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                      } else {
                          mBlocked = false;
                          if (prevMsg != null) {
                              prevMsg.next = msg.next;
                          } else {
                              mMessages = msg.next;
                          }
                          msg.next = null;
                          if (false) Log.v("MessageQueue", "Returning message: " + msg);
                          return msg;
                      }
                  } else {
                      nextPollTimeoutMillis = -1;
                  }
    
                  if (mQuitting) {
                      dispose();
                      return null;
                  }
    
                  if (pendingIdleHandlerCount < 0
                          && (mMessages == null || now < mMessages.when)) {
                      pendingIdleHandlerCount = mIdleHandlers.size();
                  }
                  if (pendingIdleHandlerCount <= 0) {
                      mBlocked = true;
                      continue;
                  }
    
                  if (mPendingIdleHandlers == null) {
                      mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                  }
                  mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
              }
    
              for (int i = 0; i < pendingIdleHandlerCount; i++) {
                  final IdleHandler idler = mPendingIdleHandlers[i];
                  mPendingIdleHandlers[i] = null;
    
                  boolean keep = false;
                  try {
                      keep = idler.queueIdle();
                  } catch (Throwable t) {
                      Log.wtf("MessageQueue", "IdleHandler threw exception", t);
                  }
    
                  if (!keep) {
                      synchronized (this) {
                          mIdleHandlers.remove(idler);
                      }
                  }
              }
    
              pendingIdleHandlerCount = 0;
              nextPollTimeoutMillis = 0;
          }
    }
    

    先看一下开始定义的2个变量的含义,pendingIdleHandlerCount表示消息队列空闲消息处理器(IdleHandler)的个数,nextPollTimeoutMillis表示没有消息处理时,线程需睡眠等待的时间.nativePollOnce将会睡眠等待nextPollTimeoutMillis时间.从nativePollOnce返回后,再从消息队列中取消息,如果没有任何消息,那么nextPollTimeoutMillis赋值为-1,表示下一次nativePollOnce无限制等待直到其他线程把它唤醒.如果取到消息,比较消息处理的时间与当前时间,如果消息处理的时间未到(now < msg.when),那么计算nextPollTimeoutMillis,等下一次时间到时再处理.如果消息处理时间已到,那么取出消息返回到Looperde的loop中处理.另外如果当前没有消息处理时,会回调注册的IdleHandler.
    下面继续分析nativePollOnce.

    static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jobject obj,
            jlong ptr, jint timeoutMillis) {
        NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
        nativeMessageQueue->pollOnce(env, obj, timeoutMillis);
    }
    
    void NativeMessageQueue::pollOnce(JNIEnv* env, jobject pollObj, int timeoutMillis) {
        mPollEnv = env;
        mPollObj = pollObj;
        mLooper->pollOnce(timeoutMillis);
        mPollObj = NULL;
        mPollEnv = NULL;
    
        if (mExceptionObj) {
            env->Throw(mExceptionObj);
            env->DeleteLocalRef(mExceptionObj);
            mExceptionObj = NULL;
        }
    }
    

    最终nativePollOnce调用的JNI层Looper的pollOnce

    int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
        int result = 0;
        for (;;) {
            ...
            if (result != 0) {
                ...
                return result;
            }
    
            result = pollInner(timeoutMillis);
        }
    }
    

    在pollOnce中不断的循环调用pollInner来检查线程是否有新消息需要处理.如果有新消息处理或者timeoutMillis时间到,则返回到java层MessageQueue的next()继续执行.

    int Looper::pollInner(int timeoutMillis) {
        ...
        int result = POLL_WAKE;
    
        struct epoll_event eventItems[EPOLL_MAX_EVENTS];
        int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
        ...
        for (int i = 0; i < eventCount; i++) {
            int fd = eventItems[i].data.fd;
            uint32_t epollEvents = eventItems[i].events;
            if (fd == mWakeEventFd) {
                if (epollEvents & EPOLLIN) {
                    awoken();
                } else {
                    ALOGW("Ignoring unexpected epoll events 0x%x on wake event fd.", epollEvents);
                }
            } else {
              ...
            }
        }
        ...
        return result;
    }
    

    epoll_wait会监听前面创建的epoll实例的文件描述符上的IO读写事件,如果文件描述上没有IO事件出现,那么则等待timeoutMillis延时,检测到EPOLLIN事件即文件描述符上发生了写事件,随后调用awoken读出数据,以便接收新的数据.

    void Looper::awoken() {
        uint64_t counter;
        TEMP_FAILURE_RETRY(read(mWakeEventFd, &counter, sizeof(uint64_t)));
    }
    

    在awoken中读出数据.然后一步步返回到java层的MessageQueue继续消息处理.


    线程消息的发送

    消息的发送是通过Handler来执行的,下面我们从new Handler()开始,一步步分析消息的发送过程
    首先看一下Handler类的主要数据成员与方法:

    public class Handler {
          final MessageQueue mQueue;
          final Looper mLooper;
    
          public Handler() {...}
          public Handler(Looper looper, Callback callback) {...}
    
          private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {...}
          public void handleMessage(Message msg) {...}
    
          public final boolean sendMessage(Message msg){...}
          public final boolean sendEmptyMessage(int what){...}
          public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) {...}
          public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {...}
          public boolean sendMessageAtTime(Message msg, long uptimeMillis) {...}
          ...
          public final boolean post(Runnable r){...}
          public final boolean postAtFrontOfQueue(Runnable r){...}
          public final boolean postAtTime(Runnable r, long uptimeMillis){...}
          public final boolean postDelayed(Runnable r, long delayMillis){...}
    }
    
    • mQueue handler对应的MessageQueue对象,通过handler发送的消息都将插入到mQueue队列中
    • mLooper handler对应的Looper对象,如果创建Handler前没有实例化Looper对象将抛出异常.

    Handler是与Looper对象相关联的,我们创建的Handler对象都会关联到某一Looper,默认情况下,Handler会关联到创建Handler对象所在线程的Looper对象,也可通过Handler的构造函数来指定关联到的Looper.Handler发送消息有二类接口,post类与send类,一般send类用来发送传统带消息ID的消息,post类用来发送带消息处理方法的消息.

    下面来看消息发送的具体流程


    消息发送流程消息发送流程

    Handler或Post类方法最终都会调用enqueueMessage将消息发送到消息队列

    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
          msg.target = this;
          if (mAsynchronous) {
              msg.setAsynchronous(true);
          }
          return queue.enqueueMessage(msg, uptimeMillis);
    }
    

    Message的成员变量target赋值为this,即关联到handler.然后继续调用MessageQueue的enqueueMessage方法

    boolean enqueueMessage(Message msg, long when) {
          if (msg.target == null) {
              throw new IllegalArgumentException("Message must have a target.");
          }
          if (msg.isInUse()) {
              throw new IllegalStateException(msg + " This message is already in use.");
          }
    
          /// M: Add message protect mechanism @{
          if (msg.hasRecycle) {
              Log.wtf("MessageQueue", "Warning: message has been recycled. msg=" + msg);
              return false;
          }
          /// Add message protect mechanism @}
    
          synchronized (this) {
              if (mQuitting) {
                  IllegalStateException e = new IllegalStateException(
                          msg.target + " sending message to a Handler on a dead thread");
                  Log.w("MessageQueue", e.getMessage(), e);
                  msg.recycle();
                  return false;
              }
    
              msg.markInUse();
              msg.when = when;
              Message p = mMessages;
              boolean needWake;
              if (p == null || when == 0 || when < p.when) {
                  // New head, wake up the event queue if blocked.
                  msg.next = p;
                  mMessages = msg;
                  needWake = mBlocked;
              } else {
                  // Inserted within the middle of the queue.  Usually we don't have to wake
                  // up the event queue unless there is a barrier at the head of the queue
                  // and the message is the earliest asynchronous message in the queue.
                  needWake = mBlocked && p.target == null && msg.isAsynchronous();
                  Message prev;
                  for (;;) {
                      prev = p;
                      p = p.next;
                      if (p == null || when < p.when) {
                          break;
                      }
                      if (needWake && p.isAsynchronous()) {
                          needWake = false;
                      }
                  }
                  msg.next = p; // invariant: p == prev.next
                  prev.next = msg;
              }
    
              // We can assume mPtr != 0 because mQuitting is false.
              if (needWake) {
                  nativeWake(mPtr);
              }
          }
          return true;
    }
    

    MessageQueue中的enqueueMessage主要工作是将message插入到队列,然后根据情况判断是否应该调用nativeWake唤醒目标线程.当前队列为空或者插入消息处理时间延时为0或者处理时间小于队头处理时间时,消息被插入到头部,否则按时间遍历插入到对应位置,并设置needWake标志,needWake是根据mBlocked来判断的,mBlocked记录了当前线程是否处于睡眠状态,如果消息插入队头且线程在睡眠中,neeWake为true,调用nativeWake唤醒目标线程.

    static void android_os_MessageQueue_nativeWake(JNIEnv* env, jclass clazz, jlong ptr) {
          NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
          return nativeMessageQueue->wake();
    }
    
    void NativeMessageQueue::wake() {
          mLooper->wake();
    }
    
    void Looper::wake() {
        uint64_t inc = 1;
        ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t)));
        if (nWrite != sizeof(uint64_t)) {
            if (errno != EAGAIN) {
                ALOGW("Could not write wake signal, errno=%d", errno);
            }
        }
    }
    

    nativeWake最终会调用到jni层的Looper对象的wake方法中,Looper wake方法的实现非常简单,即向mWakeEventFd写入一个uint64_t,这样目标线程就会因为mWakeEventFd发生的IO事件而唤醒.消息的发送流程就此结束.


    线程消息的处理

    从前面的分析可以知道,当线程没有消息需要处理时,会在c++层Looper对象的pollInner中进入睡眠等待,当有新消息唤醒该目标线程时或这延时时间到,执行流程将沿着pollInner调用路径一直返回,直到java层Looper类的loop.


    消息处理流程消息处理流程

    loop中将调用msg.target.dispatchMessage(msg)处理消息,这里的msg.target就是上面enqueueMessage中所赋值的handler,即进入handler的dispatchMessage处理消息

    public void dispatchMessage(Message msg) {
          if (msg.callback != null) {
              handleCallback(msg);
          } else {
              if (mCallback != null) {
                  if (mCallback.handleMessage(msg)) {
                      return;
                  }
              }
              handleMessage(msg);
          }
    }
    

    dispatchMessage进行消息处理,先检查是否有设置msg.callback,如果有则执行msg.callback处理消息,如果没有则继续判断mCallback的执行,最后才是handleMessage处理.


    访问我的博客

    相关文章

      网友评论

      本文标题:Android基础之消息处理机制

      本文链接:https://www.haomeiwen.com/subject/rglmlttx.html