美文网首页
load和initialize

load和initialize

作者: yidezhang | 来源:发表于2020-06-23 12:27 被阅读0次

    关于load和initialize加载都是老生常谈的问题,这里简单总结一下他们俩的区别和联系。
    load的加载顺序其实是依据mach-o中dyld加载器的顺序而定的,具体到某一类的时候,又是和prepare的顺序有关系。
    initialize则是按照send_msg方式进行的,所以它和普通的方法调用区别不大,只不过会在一个类所有方法执行之前检测一次,如果没有执行过就执行。

    1. Mach-O

    Unix标准了一个可移植的二进制格式ELF但是苹果并没有实现它而是维护了一套NeXTSTEP的遗物 Mach-Object简称Mach-O。
    但是这并不是说苹果不遵守POSXI规范,这个规范通常说的是源码级别的跨平台性,对于二进制则不强制要求。下面放两个参考链接
    mach-0
    dyld

    这里不主要讲解,大概记住,咱们所有的自己写的代码会被编译成Mach-O文件,然后使用dyld进行装载,load的加载顺序就是在装载的时候决定的。

    2. load调用。

    我们在代码中创建一个类Man,继承自Person,代码如下:

    @interface Person : NSObject
    
    @end
    @implementation Person
    + (void)load{
        NSLog(@"%s",__func__);
    }
    
    - (void)dealloc{
        NSLog(@"%s",__func__);
    }
    
    @end
    
    
    @interface Man : Person
    
    @end
    @implementation Man
    + (void)load{
        NSLog(@"%s",__func__);
    }
    +(void)initialize{
        NSLog(@"%s",__func__);
    }
    
    - (void)dealloc{
        NSLog(@"%s",__func__);
    }
    
    @end
    
    @interface Person (catergory)
    
    @end
    @implementation Person (catergory)
    + (void)load{
        NSLog(@"%s",__func__);
    }
    
    @end
    
    @interface Man(catorg)
    
    @end
    
    @implementation Man(catorg)
    + (void)load{
        NSLog(@"%s",__func__);
    }
    +(void)initialize{
        NSLog(@"%s",__func__);
    }
    
    @end
    

    通过在Man里面的load方法打断点,可以看到一些调用栈信息。如下图:


    image.png

    其实从_dyld_start 到 dyld::notifySingle方法都是dyld进行对mach-o镜像的加载准备工作,当有新的镜像(image)加载进来之后,就会走load_images(其实是imageLoader加载器的一个回调)方法,load_image传入一个image的列表,load_images里面循环调用,去初始化其中的类对象,加载load方法等。具体代码如下附带注释:

    load_images(const char *path __unused, const struct mach_header *mh)
    {
    //path即是mach-o的一个路径,mh就是mach-0的头部信息
        // Return without taking locks if there are no +load methods here.
        if (!hasLoadMethods((const headerType *)mh)) return;
    
        recursive_mutex_locker_t lock(loadMethodLock);
    
        // Discover load methods
        {
            mutex_locker_t lock2(runtimeLock);
            //这一步就是所谓的load装载工作
            prepare_load_methods((const headerType *)mh);
        }
    
        // Call +load methods (without runtimeLock - re-entrant)
        //这一步就是load调用
        call_load_methods();
    }
    

    撇开其他的代码,我们只看load相关的代码。从上面代码中可以看出,当进行load_image的时候,首先是prepare_load_methods将load方法进行准备工作,然后调用call_load_methods进行调用。

    2.1 load的装载

    prepare_load_methods其实就是首先完成了load的方法的预装载,我们先进入prepare_load_methods中,实现代码如下:

    void prepare_load_methods(const headerType *mhdr)
    {
        size_t count, i;
    
        runtimeLock.assertLocked();
      //获得当前image的类
    //classref_t 其实就是还没有map到的class_t 
        classref_t const *classlist = 
            _getObjc2NonlazyClassList(mhdr, &count);
    // 循环将类对象里的load方法地址装入列表
        for (i = 0; i < count; i++) {
            schedule_class_load(remapClass(classlist[i]));//这里remapClass其实就是重定向class的地址。有兴趣可以继续研究里面的代码。
        }
    //处理分类的方法
        category_t * const *categorylist = _getObjc2NonlazyCategoryList(mhdr, &count);
        for (i = 0; i < count; i++) {
            category_t *cat = categorylist[i];
            Class cls = remapClass(cat->cls);
            if (!cls) continue;  // category for ignored weak-linked class
            if (cls->isSwiftStable()) {
                _objc_fatal("Swift class extensions and categories on Swift "
                            "classes are not allowed to have +load methods");
            }
            realizeClassWithoutSwift(cls, nil);
            ASSERT(cls->ISA()->isRealized());
            add_category_to_loadable_list(cat);
        }
    }
    
    

    从上面代码中可以看出load装载的时候,首先是拿到images中的所有类,循环将其进行装载。这里分为两部分,一是本类的方法装载,二是分类中load方法的装载。

    2.1.1 本类load方法装载

    先看代码schedule_class_load方法:

    static void schedule_class_load(Class cls)
    {
        if (!cls) return;
        ASSERT(cls->isRealized());  // _read_images should realize
    
        if (cls->data()->flags & RW_LOADED) return;
    
        // Ensure superclass-first ordering
        schedule_class_load(cls->superclass);
    
        add_class_to_loadable_list(cls);
        cls->setInfo(RW_LOADED); 
    }
    

    本类方法装载其实就是使用schedule_class_load 方法进行加载,schedule_class_load其实是个迭代调用,每次总是先将superclass传入进行装载,这里就确定了superclass比class先行进如装载空间内。至于add_class_to_loadable_list方法 其实里面是使用了一个全局数组来存储当前需要加载的load方法的类和load方法的method对象。代码如下,不做具体讲解了。

    void add_class_to_loadable_list(Class cls)
    {
        IMP method;
    
        loadMethodLock.assertLocked();
    
        method = cls->getLoadMethod();
        if (!method) return;  // Don't bother if cls has no +load method
        
        if (PrintLoading) {
            _objc_inform("LOAD: class '%s' scheduled for +load", 
                         cls->nameForLogging());
        }
        
        if (loadable_classes_used == loadable_classes_allocated) {
            loadable_classes_allocated = loadable_classes_allocated*2 + 16;
            loadable_classes = (struct loadable_class *)
                realloc(loadable_classes,
                                  loadable_classes_allocated *
                                  sizeof(struct loadable_class));
        }
        
        loadable_classes[loadable_classes_used].cls = cls;
        loadable_classes[loadable_classes_used].method = method;
        loadable_classes_used++;
    }
    
    2.1.2 分类load方法装载

    分类装载load方法的步骤整体和本类差不多,只不过增加了一步类初始化的判断realizeClassWithoutSwift,分类装载load方法主要是使用add_category_to_loadable_list方法进行操作,代码如下:

    void add_category_to_loadable_list(Category cat)
    {
        IMP method;
    
        loadMethodLock.assertLocked();
    
        method = _category_getLoadMethod(cat);
    
        // Don't bother if cat has no +load method
        if (!method) return;
    
        if (PrintLoading) {
            _objc_inform("LOAD: category '%s(%s)' scheduled for +load", 
                         _category_getClassName(cat), _category_getName(cat));
        }
        
        if (loadable_categories_used == loadable_categories_allocated) {
            loadable_categories_allocated = loadable_categories_allocated*2 + 16;
            loadable_categories = (struct loadable_category *)
                realloc(loadable_categories,
                                  loadable_categories_allocated *
                                  sizeof(struct loadable_category));
        }
    
        loadable_categories[loadable_categories_used].cat = cat;
        loadable_categories[loadable_categories_used].method = method;
        loadable_categories_used++;
    }
    
    IMP 
    _category_getLoadMethod(Category cat)
    {
        runtimeLock.assertLocked();
    
        const method_list_t *mlist;
    
        mlist = cat->classMethods;
        if (mlist) {
            for (const auto& meth : *mlist) {
                const char *name = sel_cname(meth.name);
                if (0 == strcmp(name, "load")) {
                    return meth.imp;
                }
            }
        }
    
        return nil;
    }
    
    

    也是获取method,得到IMP地址存储在list里,它和add_class_to_loadable_list的实现几乎一样,但是分类方法load方法存储在loadable_categories里面,和本类存储的不是一个“数组”。从这里就能看出,category的加载顺序就和文件的顺序有关了,和本类父类就没有关系了。

    从上面我们基本得出三个结论:1. 本类对象装载的时候首先装载的是父类,然后是本类,2. category装载的时候是和文件顺序有关的。3. 本类对象load储存的数组和category存储的不在一起。

    2.2 load调用

    回到load_images里面,prepare_load_methods走完之后,紧接着就开始call_load_methods调用load方法,这里面就比较简单,因为前面已经将,本类,父类,分类的load方法装载入全局的“数组”里,这里只需要拿出来用就行了。代码如下:

    void call_load_methods(void)
    {
        static bool loading = NO;
        bool more_categories;
    
        loadMethodLock.assertLocked();
    
        // Re-entrant calls do nothing; the outermost call will finish the job.
        if (loading) return;
        loading = YES;
    
        void *pool = objc_autoreleasePoolPush();
    
        do {
            // 1. Repeatedly call class +loads until there aren't any more
            while (loadable_classes_used > 0) {
                call_class_loads();
            }
    
            // 2. Call category +loads ONCE
            more_categories = call_category_loads();
    
            // 3. Run more +loads if there are classes OR more untried categories
        } while (loadable_classes_used > 0  ||  more_categories);
    
        objc_autoreleasePoolPop(pool);
    
        loading = NO;
    }
    

    这里也是分两步,首先调用本类的load方法,再调用category的方法。

    2.2.1 本类load方法调用

    代码如下

    static void call_class_loads(void)
    {
       int i;
       
       // Detach current loadable list.
       struct loadable_class *classes = loadable_classes;
       int used = loadable_classes_used;
       loadable_classes = nil;
       loadable_classes_allocated = 0;
       loadable_classes_used = 0;
       
       // Call all +loads for the detached list.
       for (i = 0; i < used; i++) {
           Class cls = classes[i].cls;
           load_method_t load_method = (load_method_t)classes[i].method;
           if (!cls) continue; 
    
           if (PrintLoading) {
               _objc_inform("LOAD: +[%s load]\n", cls->nameForLogging());
           }
           (*load_method)(cls, @selector(load));
       }
       
       // Destroy the detached list.
       if (classes) free(classes);
    }
    

    从代码中可以看出,调用load方法,其实就是找到load方法地址直接调用。

    2.2.2 category load方法调用

    代码如下:

    static bool call_category_loads(void)
    {
        int i, shift;
        bool new_categories_added = NO;
        
        // Detach current loadable list.
    //1.获取当前可以加载的分类列表
        struct loadable_category *cats = loadable_categories;
        int used = loadable_categories_used;
        int allocated = loadable_categories_allocated;
        loadable_categories = nil;
        loadable_categories_allocated = 0;
        loadable_categories_used = 0;
    
        // Call all +loads for the detached list.
    //2.如果当前类是可加载的 cls && cls->isLoadable() 就会调用分类的 load 方法
        for (i = 0; i < used; i++) {
            Category cat = cats[i].cat;
            load_method_t load_method = (load_method_t)cats[i].method;
            Class cls;
            if (!cat) continue;
    
            cls = _category_getClass(cat);
            if (cls  &&  cls->isLoadable()) {
                if (PrintLoading) {
                    _objc_inform("LOAD: +[%s(%s) load]\n", 
                                 cls->nameForLogging(), 
                                 _category_getName(cat));
                }
                (*load_method)(cls, @selector(load));
                cats[i].cat = nil;
            }
        }
    
    //3.将所有加载过的分类移除 loadable_categories 列表
        // Compact detached list (order-preserving)
        shift = 0;
        for (i = 0; i < used; i++) {
            if (cats[i].cat) {
                cats[i-shift] = cats[i];
            } else {
                shift++;
            }
        }
        used -= shift;
    //4.为 loadable_categories 重新分配内存,并重新设置它的值
        // Copy any new +load candidates from the new list to the detached list.
        new_categories_added = (loadable_categories_used > 0);
        for (i = 0; i < loadable_categories_used; i++) {
            if (used == allocated) {
                allocated = allocated*2 + 16;
                cats = (struct loadable_category *)
                    realloc(cats, allocated *
                                      sizeof(struct loadable_category));
            }
            cats[used++] = loadable_categories[i];
        }
    
        // Destroy the new list.
        if (loadable_categories) free(loadable_categories);
    
        // Reattach the (now augmented) detached list. 
        // But if there's nothing left to load, destroy the list.
        if (used) {
            loadable_categories = cats;
            loadable_categories_used = used;
            loadable_categories_allocated = allocated;
        } else {
            if (cats) free(cats);
            loadable_categories = nil;
            loadable_categories_used = 0;
            loadable_categories_allocated = 0;
        }
    
        if (PrintLoading) {
            if (loadable_categories_used != 0) {
                _objc_inform("LOAD: %d categories still waiting for +load\n",
                             loadable_categories_used);
            }
        }
    
        return new_categories_added;
    }
    

    调用思路前半部分基本一样,但是分类后边增加了几步,大概如下:
    1.获取当前可以加载的分类列表
    2.如果当前类是可加载的 cls && cls->isLoadable() 就会调用分类的 load 方法
    3.将所有加载过的分类移除 loadable_categories 列表
    4.为 loadable_categories 重新分配内存,并重新设置它的值

    load总结:1. load方法调用和类加载的顺序有关。2. load分类和本类load方法分别装在不同集合里。3. 当父类和子类同时实现时候,先调用父类,再调用子类。因为父类先装载。4. load方法调用是通过IMP指针直接调用的,没有走消息发送流程。

    3. initialize调用。

    我在Man类中对initialize打断点,方法调用站大概如下:


    image.png

    因为要创建对象首先需要调用alloc方法,所以我这里第一个方法是alloc方法。顺着代码顺序,我将源码贴出来:

    static ALWAYS_INLINE id
    callAlloc(Class cls, bool checkNil, bool allocWithZone=false)
    {
    #if __OBJC2__
        if (slowpath(checkNil && !cls)) return nil;
        if (fastpath(!cls->ISA()->hasCustomAWZ())) {
            return _objc_rootAllocWithZone(cls, nil);
        }
    #endif
    
        // No shortcuts available.
        if (allocWithZone) {
            return ((id(*)(id, SEL, struct _NSZone *))objc_msgSend)(cls, @selector(allocWithZone:), nil);
        }
        return ((id(*)(id, SEL))objc_msgSend)(cls, @selector(alloc));
    }
    
    IMP lookUpImpOrForward(id inst, SEL sel, Class cls, int behavior)
    {
        const IMP forward_imp = (IMP)_objc_msgForward_impcache;
        IMP imp = nil;
        Class curClass;
    
        runtimeLock.assertUnlocked();
    
        // Optimistic cache lookup
        if (fastpath(behavior & LOOKUP_CACHE)) {
            imp = cache_getImp(cls, sel);
            if (imp) goto done_nolock;
        }
    
        // runtimeLock is held during isRealized and isInitialized checking
        // to prevent races against concurrent realization.
    
        // runtimeLock is held during method search to make
        // method-lookup + cache-fill atomic with respect to method addition.
        // Otherwise, a category could be added but ignored indefinitely because
        // the cache was re-filled with the old value after the cache flush on
        // behalf of the category.
    
        runtimeLock.lock();
    
        // We don't want people to be able to craft a binary blob that looks like
        // a class but really isn't one and do a CFI attack.
        //
        // To make these harder we want to make sure this is a class that was
        // either built into the binary or legitimately registered through
        // objc_duplicateClass, objc_initializeClassPair or objc_allocateClassPair.
        //
        // TODO: this check is quite costly during process startup.
        checkIsKnownClass(cls);
    
        if (slowpath(!cls->isRealized())) {
            cls = realizeClassMaybeSwiftAndLeaveLocked(cls, runtimeLock);
            // runtimeLock may have been dropped but is now locked again
        }
    
        if (slowpath((behavior & LOOKUP_INITIALIZE) && !cls->isInitialized())) {
            cls = initializeAndLeaveLocked(cls, inst, runtimeLock);
            // runtimeLock may have been dropped but is now locked again
    
            // If sel == initialize, class_initialize will send +initialize and 
            // then the messenger will send +initialize again after this 
            // procedure finishes. Of course, if this is not being called 
            // from the messenger then it won't happen. 2778172
        }
    
        runtimeLock.assertLocked();
        curClass = cls;
    
        // The code used to lookpu the class's cache again right after
        // we take the lock but for the vast majority of the cases
        // evidence shows this is a miss most of the time, hence a time loss.
        //
        // The only codepath calling into this without having performed some
        // kind of cache lookup is class_getInstanceMethod().
    
        for (unsigned attempts = unreasonableClassCount();;) {
            // curClass method list.
            Method meth = getMethodNoSuper_nolock(curClass, sel);
            if (meth) {
                imp = meth->imp;
                goto done;
            }
    
            if (slowpath((curClass = curClass->superclass) == nil)) {
                // No implementation found, and method resolver didn't help.
                // Use forwarding.
                imp = forward_imp;
                break;
            }
    
            // Halt if there is a cycle in the superclass chain.
            if (slowpath(--attempts == 0)) {
                _objc_fatal("Memory corruption in class list.");
            }
    
            // Superclass cache.
            imp = cache_getImp(curClass, sel);
            if (slowpath(imp == forward_imp)) {
                // Found a forward:: entry in a superclass.
                // Stop searching, but don't cache yet; call method
                // resolver for this class first.
                break;
            }
            if (fastpath(imp)) {
                // Found the method in a superclass. Cache it in this class.
                goto done;
            }
        }
    
        // No implementation found. Try method resolver once.
    
        if (slowpath(behavior & LOOKUP_RESOLVER)) {
            behavior ^= LOOKUP_RESOLVER;
            return resolveMethod_locked(inst, sel, cls, behavior);
        }
    
     done:
        log_and_fill_cache(cls, imp, sel, inst, curClass);
        runtimeLock.unlock();
     done_nolock:
        if (slowpath((behavior & LOOKUP_NIL) && imp == forward_imp)) {
            return nil;
        }
        return imp;
    }
    
    static Class initializeAndLeaveLocked(Class cls, id obj, mutex_t& lock)
    {
        return initializeAndMaybeRelock(cls, obj, lock, true);
    }
    static Class initializeAndMaybeRelock(Class cls, id inst,
                                          mutex_t& lock, bool leaveLocked)
    {
        lock.assertLocked();
        ASSERT(cls->isRealized());
    
        if (cls->isInitialized()) {
            if (!leaveLocked) lock.unlock();
            return cls;
        }
    
        // Find the non-meta class for cls, if it is not already one.
        // The +initialize message is sent to the non-meta class object.
        Class nonmeta = getMaybeUnrealizedNonMetaClass(cls, inst);
    
        // Realize the non-meta class if necessary.
        if (nonmeta->isRealized()) {
            // nonmeta is cls, which was already realized
            // OR nonmeta is distinct, but is already realized
            // - nothing else to do
            lock.unlock();
        } else {
            nonmeta = realizeClassMaybeSwiftAndUnlock(nonmeta, lock);
            // runtimeLock is now unlocked
            // fixme Swift can't relocate the class today,
            // but someday it will:
            cls = object_getClass(nonmeta);
        }
    
        // runtimeLock is now unlocked, for +initialize dispatch
        ASSERT(nonmeta->isRealized());
        initializeNonMetaClass(nonmeta);
    
        if (leaveLocked) runtimeLock.lock();
        return cls;
    }
    void initializeNonMetaClass(Class cls)
    {
        ASSERT(!cls->isMetaClass());
    
        Class supercls;
        bool reallyInitialize = NO;
    
        // Make sure super is done initializing BEFORE beginning to initialize cls.
        // See note about deadlock above.
        supercls = cls->superclass;
        if (supercls  &&  !supercls->isInitialized()) {
            initializeNonMetaClass(supercls);
        }
        
        // Try to atomically set CLS_INITIALIZING.
        SmallVector<_objc_willInitializeClassCallback, 1> localWillInitializeFuncs;
        {
            monitor_locker_t lock(classInitLock);
            if (!cls->isInitialized() && !cls->isInitializing()) {
                cls->setInitializing();
                reallyInitialize = YES;
    
                // Grab a copy of the will-initialize funcs with the lock held.
                localWillInitializeFuncs.initFrom(willInitializeFuncs);
            }
        }
        
        if (reallyInitialize) {
            // We successfully set the CLS_INITIALIZING bit. Initialize the class.
            
            // Record that we're initializing this class so we can message it.
            _setThisThreadIsInitializingClass(cls);
    
            if (MultithreadedForkChild) {
                // LOL JK we don't really call +initialize methods after fork().
                performForkChildInitialize(cls, supercls);
                return;
            }
            
            for (auto callback : localWillInitializeFuncs)
                callback.f(callback.context, cls);
    
            // Send the +initialize message.
            // Note that +initialize is sent to the superclass (again) if 
            // this class doesn't implement +initialize. 2157218
            if (PrintInitializing) {
                _objc_inform("INITIALIZE: thread %p: calling +[%s initialize]",
                             objc_thread_self(), cls->nameForLogging());
            }
    
            // Exceptions: A +initialize call that throws an exception 
            // is deemed to be a complete and successful +initialize.
            //
            // Only __OBJC2__ adds these handlers. !__OBJC2__ has a
            // bootstrapping problem of this versus CF's call to
            // objc_exception_set_functions().
    #if __OBJC2__
            @try
    #endif
            {
                callInitialize(cls);
    
                if (PrintInitializing) {
                    _objc_inform("INITIALIZE: thread %p: finished +[%s initialize]",
                                 objc_thread_self(), cls->nameForLogging());
                }
            }
    #if __OBJC2__
            @catch (...) {
                if (PrintInitializing) {
                    _objc_inform("INITIALIZE: thread %p: +[%s initialize] "
                                 "threw an exception",
                                 objc_thread_self(), cls->nameForLogging());
                }
                @throw;
            }
            @finally
    #endif
            {
                // Done initializing.
                lockAndFinishInitializing(cls, supercls);
            }
            return;
        }
        
        else if (cls->isInitializing()) {
            // We couldn't set INITIALIZING because INITIALIZING was already set.
            // If this thread set it earlier, continue normally.
            // If some other thread set it, block until initialize is done.
            // It's ok if INITIALIZING changes to INITIALIZED while we're here, 
            //   because we safely check for INITIALIZED inside the lock 
            //   before blocking.
            if (_thisThreadIsInitializingClass(cls)) {
                return;
            } else if (!MultithreadedForkChild) {
                waitForInitializeToComplete(cls);
                return;
            } else {
                // We're on the child side of fork(), facing a class that
                // was initializing by some other thread when fork() was called.
                _setThisThreadIsInitializingClass(cls);
                performForkChildInitialize(cls, supercls);
            }
        }
        
        else if (cls->isInitialized()) {
            // Set CLS_INITIALIZING failed because someone else already 
            //   initialized the class. Continue normally.
            // NOTE this check must come AFTER the ISINITIALIZING case.
            // Otherwise: Another thread is initializing this class. ISINITIALIZED 
            //   is false. Skip this clause. Then the other thread finishes 
            //   initialization and sets INITIALIZING=no and INITIALIZED=yes. 
            //   Skip the ISINITIALIZING clause. Die horribly.
            return;
        }
        
        else {
            // We shouldn't be here. 
            _objc_fatal("thread-safe class init in objc runtime is buggy!");
        }
    }
    
    void callInitialize(Class cls)
    {
        ((void(*)(Class, SEL))objc_msgSend)(cls, @selector(initialize));
        asm("");
    }
    

    贴了这么多其实就是最后一个方法管用,callInitialize,这里是调用initialize的方式,就是通过消息转发进行的。前面的方法里都是进行实例类对象一些初始化判断,调用判断等。
    initialize 其实就是消息发送,它遵循消息发送的规则。

    以上大概就是load方法和initialize的底层实现原理,总结如下:

    1. load方法发生在main方法之前,使用的是地址直接调用,本类和分类都会调用。
    2. initialize方法发生在main之后,使用消息发送实现,遵循消息发送规则,分类方法会覆盖本类方法。
    3. 他们俩都会先调用父类方法。

    思考一个问题,Person,Animal,Man:Person 这三个类的实现顺序是这样的,load方法会怎么调用。

    这里也有一个写得比较好的文章:https://zhuanlan.zhihu.com/p/20816991

    相关文章

      网友评论

          本文标题:load和initialize

          本文链接:https://www.haomeiwen.com/subject/rgvcfktx.html