美文网首页机器学习实战
机器学习实战-支持向量机

机器学习实战-支持向量机

作者: mov觉得高数好难 | 来源:发表于2017-06-16 12:13 被阅读0次

    支持向量机
    优点:泛化错误率低,计算开销不大,结果易于理解
    缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二类问题
    适用数据类型:数值型和标称型数据

    如果数据集是1024维,需使用一个1023维的某对象来对数据进行分隔,改对象称作超平面。

    #6-1 SMO算法辅助函数
    def loadDataSet(fileName):#解析
        dataMat = [];labelMat = []
        fr = open(fileName)
        for line in fr.readlines():
            lineArr = line.strip().split("\t")
            dataMat.append([float(lineArr[0]),float(lineArr[1])])
            labelMat.append(float(lineArr[2]))
        return dataMat,labelMat
    
    def selectJrand(i,m):#防止alpha下标和alpha的数目相同
        j=i
        while(j==i):
            j = int(random.uniform(0,m))
        return j
    
    def clipAlpha(aj,H,L):
        if aj > H:
            aj = H
        if L > aj:
            aj = L
        return aj
    

    实验这部分代码

    import svmMLiA
    dataArr,labelArr = svmMLiA.loadDataSet("testSet.txt")
    labelArr
    Out[7]: 
    [-1.0,
     -1.0,
    #略过若干结果...
     -1.0,
     -1.0]
    

    下面开始SMO算法的第一个版本,伪代码大致如下:

    创建一个alpha向量并将其初始化为0向量
    当迭代次数小于最大迭代次数时(外循环)
        对数据集中的每个数据向量(内循环):
        如果该数据向量可以被优化:
            随机选择另外一个数据向量
            同事优化这两个向量
            如果两个向量都不能被优化,退出内循环
    如果所有向量都没被优化,增加迭代数目,继续下一次循环
    
    #6-2 简化版SMO算法
    def smoSimple(dataMatIn,classLabels,C,toler,maxIter):#数据集,类别标签,常数C,容错率,退出前最大的循环次数
        dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
        b = 0; m,n = shape(dataMatrix)
        alphas =mat(zeros((m,1)))
        iter = 0
        while(iter < maxIter):
            alphaPairsChanged = 0
            for i in range(m):
                fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T))+b
                Ei = fXi - float(labelMat[i])
                if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
                    j = selectJrand(i,m)
                    fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) +b
                    Ej = fXj - float(labelMat[j])
                    alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();#深度拷贝
                    if (labelMat[i]!=labelMat[j]):#保证alpha在0和C之间
                        L = max(0,alphas[j]-alphas[i])
                        H = min(C,C+alphas[j]-alphas[i])
                    else:
                        L = max(0,alphas[j]+alphas[i]-C)
                        H = min(C,alphas[j]+alphas[i])
                    if L==H:print "L==H"; continue
                    #eta是alpha[j]的最优修改量
                    eta = 2.0*dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
                    if eta>=0:print "eta>=0";continue
                    alphas[j]-=labelMat[j]*(Ei-Ej)/eta
                    alphas[j]=clipAlpha(alphas[j],H,L)
                    if (abs(alphas[j]-alphaJold)<0.00001):print"j not moving enough"; continue
                    alphas[i]+=labelMat[j]*labelMat[i]*(alphaJold-alphas[j])#修改方向相反
                    b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
                    b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
                    if (0 < alphas[i]) and (C > alphas[i]): b = b1#设置常数项B
                    elif (0 < alphas[j]) and (C > alphas[j]): b = b2
                    else: b = (b1 + b2)/2.0
                    alphaPairsChanged += 1
                    print "iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
            if (alphaPairsChanged == 0): iter += 1
            else: iter = 0
            print "iteration number: %d" % iter
        return b,alphas
    
    #测试实际效果
    import svmMLiA
    dataArr,labelArr = svmMLiA.loadDataSet("testSet.txt")
    b,alphas = svmMLiA.smoSimple(dataArr,labelArr,0.6,0.001,40)
    
    #略过部分
    iteration number: 28
    iter: 28 i:29, pairs changed 1
    iteration number: 0
    j not moving enough
    iteration number: 1
    j not moving enough
    j not moving enough
    iteration number: 40
    

    对结果进行观察

    In [27]: b
    Out[27]: matrix([[-3.83810926]])
    

    我们可以直接观察alpha本身,但是其中的0元素过多,为了观察大于0的元素的数量,可以

    alphas[alphas>0]#适用于NumPy类型
    Out[28]: matrix([[ 0.12749752,  0.24132585,  0.36882337]])
    

    由于SMO算法的随机性,读者运行后的结果可能不同。

    #获得支持向量的格式
    In [30]: shape(alphas[alphas>0])
    Out[30]: (1L, 3L)
    #了解哪些数据点是支持向量
    In [32]: for i in range(100):
        ...:     if alphas[i]>0.0:print dataArr[i],labelArr[i]
        ...:     
    [4.658191, 3.507396] -1.0
    [3.457096, -0.082216] -1.0
    [6.080573, 0.418886] 1.0
    

    下面开始讨论完整版Platt SMO算法。他通过一个外循环来选择第一个alpha值,并且选择过程会在两种方式之间进行交替:一种是在所有数据集是进行单遍扫描,另一种方式则是非边界alpha中实现单遍扫描。

    class optStruct:
        def __init__(self,dataMatIn,classLabels,C,toler):
            self.X = dataMatIn
            self.labelMat = classLabels
            self.C = C
            self.tol = toler
            self.m = shape(dataMatIn)[0]
            self.alphas = mat(zeros((self.m,1)))#是否有效的标志位和实际的E值
            self.b = 0
            self.eCache = mat(zeros((self.m,2)))
            #self.K = mat(zeros((self.m,self.m)))
            #for i in range(self.m):
               # self.K[:,i] = kernelTrans(self.X,self.X[i,:],kTup)
                
    def calcEk(oS,k):
        fXk = float(multiply(oS.alphas,oS.labelMat).T*(oS.X*oS.X[k,:].T)) + oS.b
        Ek = fXk - float(oS.labelMat[k])
        return Ek
    
    def selectJ(i,oS,Ei):
        maxK = -1; maxDeltaE=0; Ej=0
        oS.eCache[i] = [1,Ei]
        validEcacheList=nonzero(oS.eCache[:,0].A)[0]
        if(len(validEcacheList))>1:
            for k in validEcacheList:
                if k==i: continue
                Ek = calcEk(oS,k)
                deltaE=abs(Ei-Ek)
                if(deltaE>maxDeltaE):#选择最大步长
                    maxK=k;maxDeltaE=deltaE;Ej=Ek
            return maxK,Ej
        else:
            j=selectJrand(i,oS.m)
            Ej=calcEk(oS,j)
        return j,Ej
        
    def updateEk(oS, k):
        Ek = calcEk(oS, k)
        oS.eCache[k] = [1,Ek]
    
    #寻找决策边界的优化例程
    def innerL(i,oS):
        Ei=calcEk(oS,i)
        if((oS.labelMat[i]*Ei<-oS.tol)and(oS.alphas[i]< oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
            j,Ej = selectJ(i, oS, Ei)
            alphaIold = oS.alphas[i].copy();alphaJold = oS.alphas[j].copy();
            if (oS.labelMat[i] != oS.labelMat[j]):
                L = max(0,oS.alphas[j] - oS.alphas[i])
                H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
            else:
                L = max(0,oS.alphas[j] + oS.alphas[i] - oS.C)
                H = min(oS.C, oS.alphas[j] + oS.alphas[i]) 
            if L==H: print "L==H"; return 0
            eta = 2.0*oS.X[i,:]*oS.X[j,:].T - oS.X[i,:]*oS.X[i,:].T - oS.X[j,:]*oS.X[j,:].T
            if eta >= 0: print "eta>=0"; return 0
            oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
            oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
            updateEk(oS, j)#更新缓存误差
            if (abs(oS.alphas[j] - alphaJold) < 0.00001):print "j not moving enough"; return 0
            oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])
            updateEk(oS, i)
            b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[i,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[i,:]*oS.X[j,:].T
            b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[j,:].T- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[j,:]*oS.X[j,:].T
            if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
            elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
            else: oS.b = (b1 + b2)/2.0
            return 1
        else: return 0
    
    def smoP(dataMatIn, classLabels, C, toler, maxIter):
        oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler)#构建数据结构容纳所有数据
        iter = 0
        entireSet = True; alphaPairsChanged = 0
        while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
            alphaPairsChanged = 0
            if entireSet: 
                for i in range(oS.m):                        
                    alphaPairsChanged += innerL(i,oS)
                    print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
                iter += 1
            else:
                nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
                for i in nonBoundIs:
                    alphaPairsChanged += innerL(i,oS)
                    print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
                iter += 1
            if entireSet: entireSet = False
            elif (alphaPairsChanged == 0): entireSet = True  
            print "iteration number: %d" % iter
        return oS.b,oS.alphas
    

    下面观察上述执行结果:

    import svmMLiAli
    dataArr,labelArr = svmMLiAli.loadDataSet("testSet.txt")
    b,alphas = svmMLiAli.smoP(dataArr,labelArr,0.6,0.001,40)
    
    fullSet, iter: 0 i:0, pairs changed 1
    fullSet, iter: 0 i:1, pairs changed 1
    fullSet, iter: 0 i:2, pairs changed 2
    fullSet, iter: 0 i:3, pairs changed 3
    L==H
    fullSet, iter: 0 i:4, pairs changed 3
    L==H
    fullSet, iter: 0 i:5, pairs changed 3
    L==H
    fullSet, iter: 0 i:6, pairs changed 3
    fullSet, iter: 0 i:7, pairs changed 3
    fullSet, iter: 0 i:8, pairs changed 4
    fullSet, iter: 0 i:9, pairs changed 4
    j not moving enough
    fullSet, iter: 0 i:10, pairs changed 4
    fullSet, iter: 0 i:11, pairs changed 4
    fullSet, iter: 0 i:12, pairs changed 4
    fullSet, iter: 0 i:13, pairs changed 4
    fullSet, iter: 0 i:14, pairs changed 4
    fullSet, iter: 0 i:15, pairs changed 4
    fullSet, iter: 0 i:16, pairs changed 4
    j not moving enough#省略部分结果
    

    下面开始计算w

    def calcWs(alphas,dataArr,classLabels):
        X = mat(dataArr); labelMat = mat(classLabels).transpose()
        m,n = shape(X)
        w = zeros((n,1))
        for i in range(m):
            w += multiply(alphas[i]*labelMat[i],X[i,:].T)
        return w
    
    In [2]: ws = calcWs(alphas,dataArr,labelArr)
    
    In [3]: ws
    Out[3]: 
    array([[ 0.65307162],
           [-0.17196128]])
    

    现在对数据进行分类处理,比如对第一个数据分类,可以:

    In [4]: datMat = mat(dataArr)
    
    In [5]: datMat[0]*mat(ws) + b
    Out[5]: matrix([[-0.92555695]])
    

    如果该数字大于0,则属于1类,小于则属于-1类:

    In [6]: labelArr[0]
    Out[6]: -1.0
    
    In [7]: datMat[2]*mat(ws) + b
    Out[7]: matrix([[ 2.30436336]])
    
    In [8]: labelArr[2]
    Out[8]: 1.0
    
    In [9]: datMat[1]*mat(ws) + b
    Out[9]: matrix([[-1.36706674]])
    
    In [10]: labelArr[1]
    Out[10]: -1.0
    

    下面研究不能线性处理的情况,需要使用核函数(kernel)。我们需要将数据从一个特征空间转换到另外一个特征空间。

    #6-6 核转换函数
    def kernelTrans(X, A, kTup):#kT是核函数信息,第一个是类型,另外两个是可选参数
        m,n = shape(X)
        K = mat(zeros((m,1)))
        if kTup[0]=="lin":K = X * A.T
        elif kTup[0] == "rbf":
            for j in range(m):
                deltaRow = X[j,:] - A
                K[j] = deltaRow*deltaRow.T
            K = exp(K/(-1*kTup[1]**2))#元素除,NumPy中指矩阵元素展开计算
        else: raise NameError("Houston We Have a Problem -- That Kernel is not recognized")
        return K
    
    class optStruct:
        def __init__(self,dataMatIn,classLabels,C,toler, kTup):#增加kTup
            self.X = dataMatIn
            self.labelMat = classLabels
            self.C = C
            self.tol = toler
            self.m = shape(dataMatIn)[0]
            self.alphas = mat(zeros((self.m,1)))#是否有效的标志位和实际的E值
            self.b = 0
            self.eCache = mat(zeros((self.m,2)))
            #更新部分
            self.K = mat(zeros((self.m,self.m)))
            for i in range(self.m):
                self.K[:,i] = kernelTrans(self.X,self.X[i,:],kTup)
    

    另外还需要修改:

    def innerL(i,oS):
            #eta = 2.0*oS.X[i,:]*oS.X[j,:].T - oS.X[i,:]*oS.X[i,:].T - oS.X[j,:]*oS.X[j,:].T
            eta = 2.0*oS.K[i,j] - oS.K[i,i] - oS.K[j,j]
            #b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[i,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[i,:]*oS.X[j,:].T
            #b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[j,:].T- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[j,:]*oS.X[j,:].T
            b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
            b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
    def calcEk(oS,k):
            #fXk = float(multiply(oS.alphas,oS.labelMat).T*(oS.X*oS.X[k,:].T)) + oS.b
            fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
    
    #6-8 利用核函数进行分类的径向基测试函数
    def testRbf(k1=1.3):
        dataArr,labelArr = loadDataSet("testSetRBF.txt")
        b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ("rbf", k1))
        datMat = mat(dataArr); labelMat = mat(labelArr).transpose()
        svInd = nonzero(alphas.A>0)[0] #返回数组中值不为零的元素的下标
        sVs = datMat[svInd]
        labelSV = labelMat[svInd]
        print "there are %d Support Vectors" % shape(sVs)[0]
        m,n = shape(datMat)
        errorCount = 0
        for i in range(m):
            kernelEval = kernelTrans(sVs,datMat[i,:],("rbf",k1))
            predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
            if sign(predict)!=sign(labelArr[i]): errorCount += 1
        print "the training error rate is: %f" % (float(errorCount)/m)
        dataArr,labelArr = loadDataSet('testSetRBF2.txt')
        errorCount = 0
        datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
        m,n = shape(datMat)
        for i in range(m):#测试数据集
            kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
            predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
            if sign(predict)!=sign(labelArr[i]): errorCount += 1    
        print "the test error rate is: %f" % (float(errorCount)/m) 
    

    测试

    In [19]: svmMLiA.testRbf()
    #省略部分数据
    L==H
    fullSet, iter: 4 i:91, pairs changed 0
    L==H
    fullSet, iter: 4 i:92, pairs changed 0
    fullSet, iter: 4 i:93, pairs changed 0
    fullSet, iter: 4 i:94, pairs changed 0
    fullSet, iter: 4 i:95, pairs changed 0
    L==H
    fullSet, iter: 4 i:96, pairs changed 0
    fullSet, iter: 4 i:97, pairs changed 0
    fullSet, iter: 4 i:98, pairs changed 0
    fullSet, iter: 4 i:99, pairs changed 0
    iteration number: 5
    there are 29 Support Vectors
    the training error rate is: 0.130000
    the test error rate is: 0.150000
    

    支持向量的数目存在一个最优值。SVM的优点在于它能对数据进行高效分类。如果支持向量太少,就可能会得到一个很差的决策边界;如果支持向量太多,也就相当于每次都利用整个数据集进行分类,这种分类情况称作k近邻。
    先加入第二章knn算法中的img2vector()函数,然后加入如下代码:

    #6-9 基于SVM的手写数字识别
    def loadImages(dirName):
        from os import listdir
        hwLabels = []
        trainingFileList = listdir(dirName)
        m = len(trainingFileList)#总文件个数
        trainingMat = zeros((m,1024))
        for i in range(m):
            fileNameStr = trainingFileList[i]
            fileStr = fileNameStr.split('.')[0]#按“.”分开,取第0行
            classNumStr = int(fileStr.split('_')[0])
            if classNumStr == 9: hwLabels.append(-1)
            else: hwLabels.append(1)
            trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
        return trainingMat, hwLabels    
    
    def testDigits(kTup=('rbf', 10)):
        dataArr,labelArr = loadImages('trainingDigits')
        b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
        datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
        svInd=nonzero(alphas.A>0)[0]
        sVs=datMat[svInd] 
        labelSV = labelMat[svInd];
        print "there are %d Support Vectors" % shape(sVs)[0]
        m,n = shape(datMat)
        errorCount = 0
        for i in range(m):
            kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
            predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
            if sign(predict)!=sign(labelArr[i]): errorCount += 1
        print "the training error rate is: %f" % (float(errorCount)/m)
        dataArr,labelArr = loadImages('testDigits')
        errorCount = 0
        datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
        m,n = shape(datMat)
        for i in range(m):
            kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
            predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
            if sign(predict)!=sign(labelArr[i]): errorCount += 1    
        print "the test error rate is: %f" % (float(errorCount)/m) 
    
    In [35]: svmMLiA.testDigits(("rbf",20))
    #省略部分结果
    L==H
    fullSet, iter: 3 i:397, pairs changed 0
    L==H
    fullSet, iter: 3 i:398, pairs changed 0
    L==H
    fullSet, iter: 3 i:399, pairs changed 0
    fullSet, iter: 3 i:400, pairs changed 0
    j not moving enough
    fullSet, iter: 3 i:401, pairs changed 0
    iteration number: 4
    there are 51 Support Vectors
    the training error rate is: 0.000000
    the test error rate is: 0.016129
    

    根据课本,σ取10的时候可以得到最小的错误率。可以观察到一个有趣的现象,即最小的训练错误率并不对应于最小的支持向量数目。另外,线性核函数并不是特别的糟糕,可以以牺牲线性核函数的错误率来换取分类速度的提高。

    相关文章

      网友评论

        本文标题:机器学习实战-支持向量机

        本文链接:https://www.haomeiwen.com/subject/rmnpqxtx.html