美文网首页
logistic_regression

logistic_regression

作者: 醉乡梦浮生 | 来源:发表于2018-09-05 16:06 被阅读0次

    tensorflow code

    from __future__ import print_function
    
    import tensorflow as tf
    
    # Import MNIST data
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("MNIST/", one_hot=True)
    
    # Parameters
    learning_rate = 0.01
    training_epochs = 25
    batch_size = 100
    display_step = 1
    
    # tf Graph Input
    x = tf.placeholder(tf.float32, [None, 784]) # mnist data image of shape 28*28=784
    y = tf.placeholder(tf.float32, [None, 10]) # 0-9 digits recognition => 10 classes
    
    # Set model weights
    W = tf.Variable(tf.zeros([784, 10]))
    b = tf.Variable(tf.zeros([10]))
    
    # Construct model
    pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax
    
    # Minimize error using cross entropy
    cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1))
    # Gradient Descent
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
    
    # Initialize the variables (i.e. assign their default value)
    init = tf.global_variables_initializer()
    
    # Start training
    with tf.Session() as sess:
    
        # Run the initializer
        sess.run(init)
    
        # Training cycle
        for epoch in range(training_epochs):
            avg_cost = 0.
            total_batch = int(mnist.train.num_examples/batch_size)
            # Loop over all batches
            for i in range(total_batch):
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)
                # Run optimization op (backprop) and cost op (to get loss value)
                _, c = sess.run([optimizer, cost], feed_dict={x: batch_xs,
                                                              y: batch_ys})
                # Compute average loss
                avg_cost += c / total_batch
            # Display logs per epoch step
            if (epoch+1) % display_step == 0:
                print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
    
        print("Optimization Finished!")
    
        # Test model
        correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
        # Calculate accuracy
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
    
    

    相关文章

      网友评论

          本文标题:logistic_regression

          本文链接:https://www.haomeiwen.com/subject/rmwawftx.html