class Config:
seg_dim = 20 #切词信息维度
char_dim = 100 #字向量模型维度
lstm_dim = 100 #lstm 内部维度
dropout = 0.5
learn_rate = 0.001 #学习率
max_epoch = 400 #最大训练次数
batch_size = 64
steps_check = 300 # 检查频率
num_tags = 51
num_chars = 2641
num_segs = 4 # 切词信息 四维 i b o e
filter_width = 3 # 卷积核大小
repeat_times = 4 # 膨胀卷积时卷积次数
clip = 5
optimizer = 'adam'
model_type = 'idcnn' # 训练模型
tag_schema = 'iobes'
pre_emb = True
lower = False
zeros = True
clean = True
root_path = os.getcwd() + os.sep
# ckpt_path = os.path.join(root_path + 'ckpt', "") # 模型路径
cnn_ckpt_path = os.path.join(root_path + 'ckpt\idcnn', '')
lstm_ckpt_path = os.path.join(root_path + 'ckpt\lstm', '')
log_file = os.path.join(root_path + 'log', 'train.log') # 训练日志记录
train_file = os.path.join(root_path + 'data', 'train.txt') # 训练数据集
dev_file = os.path.join(root_path + 'data', 'dev.txt') # 验证数据集
test_file = os.path.join(root_path + 'data', 'test.txt') # 测试数据集
report_file= os.path.join(root_path + 'result', 'predict.txt') # 测试数据集
assert 0 < dropout< 1, 'dropout must between 0, 1'
assert learn_rate > 0, 'learn_rate must > 0'
assert optimizer in ['adam', 'sgd', 'adagrad'] , 'this optimizer not exist'
网友评论