美文网首页
LCA 欧拉+ST表 Java实现

LCA 欧拉+ST表 Java实现

作者: kaiker | 来源:发表于2023-03-25 19:20 被阅读0次
    import java.util.ArrayList;
    import java.util.List;
    
    class LCA {
        private int[] euler; // 树的遍历结果
        private int[] depths; // 节点深度
        private int[] first; // 节点在遍历结果中首次出现的位置
        private int[] logTable; // log2表
        private int[][] st; // ST表
        private int idx; // 当前节点在遍历结果中的位置
    
        public LCA(TreeNode root, int nodeNum) {
            euler = new int[2 * nodeNum - 1];
            depths = new int[2 * nodeNum - 1];
            first = new int[nodeNum];
            logTable = new int[euler.length + 1];
            idx = 0;
            dfs(root, 0);
            buildLogTable();
            buildSTTable();
        }
    
        // 欧拉遍历
        private void dfs(TreeNode node, int depth) {
            first[node.val] = idx;
            euler[idx] = node.val;
            depths[idx++] = depth;
            for (TreeNode child : node.children) {
                dfs(child, depth + 1);
                euler[idx] = node.val;
                depths[idx++] = depth;
            }
        }
    
        private void buildLogTable() {
            for (int i = 2; i <= euler.length; i++) {
                logTable[i] = logTable[i / 2] + 1;
            }
        }
    
        private void buildSTTable() {
            int n = euler.length;
            int m = logTable[n] + 1;
            st = new int[n][m];
            for (int i = 0; i < n; i++) {
                st[i][0] = i;
            }
            for (int j = 1; j < m; j++) {
                for (int i = 0; i + (1 << j) <= n; i++) {
                    int x = st[i][j - 1];
                    int y = st[i + (1 << (j - 1))][j - 1];
                    st[i][j] = depths[x] < depths[y] ? x : y;
                }
            }
        }
    
        private int querySTTable(int left, int right) {
            int k = logTable[right - left + 1];
            int x = st[left][k];
            int y = st[right - (1 << k) + 1][k];
            return depths[x] < depths[y] ? euler[x] : euler[y];
        }
    
        public int findLCA(TreeNode p, TreeNode q) {
            int left = first[p.val];
            int right = first[q.val];
            if (left > right) {
                int tmp = left;
                left = right;
                right = tmp;
            }
            return querySTTable(left, right);
        }
    
        public static void main(String[] args) {
            TreeNode node5 = new TreeNode(5);
            TreeNode node4 = new TreeNode(4);
            TreeNode node3 = new TreeNode(3);
            TreeNode node2 = new TreeNode(2);
            node2.children.add(node5);
            TreeNode node1 = new TreeNode(1);
            node1.children.add(node3);
            node1.children.add(node4);
            TreeNode node0 = new TreeNode(0);
            node0.children.add(node1);
            node0.children.add(node2);
            LCA lca = new LCA(node0, 6);
            System.out.println(lca.findLCA(node3, node4));
        }
    }
    
    
    class TreeNode {
        int val;
        List<TreeNode> children;
        // constructor
        public TreeNode(int val) {
            this.val = val;
            this.children = new ArrayList<>();
        }
    }
    

    相关文章

      网友评论

          本文标题:LCA 欧拉+ST表 Java实现

          本文链接:https://www.haomeiwen.com/subject/rrpnrdtx.html