什么是哈希算法
通过之前的学习,我们已经了解了哈希函数在散列表中的应用,哈希函数就是哈希算法的一个应用。那么在这里给出哈希的定义:将任意长度的二进制值串映射为固定长度的二进制值串,这个映射规则就是哈希算法,得到的二进制值串就是哈希值。
要设计一个好的哈希算法并不容易,它应该满足以下几点要求:
- 从哈希值不能反向推导出原始数据(所以哈希算法是单向的)。
- 对输入数据敏感,两个数据中有任何一点不同,最后得到的哈希值也不同。
- 散列冲突的概率要小,不同数据计算得到的哈希值相同的概率非常小。
- 哈希算法执行高效,对大文本也能快速计算出哈希值。
哈希算法的应用
哈希算法的应用非常广泛,在这里就介绍七点应用:
应用一:安全加密
有很多著名的哈希加密算法:MD5、SHA、DES...它们都是通过哈希进行加密的算法。
对于加密的哈希算法来说,有两点十分重要:一是很难根据哈希值反推导出原始数据;二是散列冲突的概率要很小。
当然,哈希算法不可能排除散列冲突的可能,这用数学中的鸽巢原理就可以很好解释。以MD5算法来说,得到的哈希值为一个 128 位的二进制数,它的数据容量最多为 2128 bit,如果超过这个数据量,必然会出现散列冲突。
在加密解密领域没有绝对安全的算法,一般来说,只要解密的计算量极其庞大,我们就可以认为这种加密方法是较为安全的。
应用二:唯一标识
假设我们有100万个图片,如果我们在图片中寻找某一个图片是非常耗时的,这是我们就可以使用哈希算法的原理为图片设置唯一标识。比如,我们可以从图片的二进制码串开头取100个字节,从中间取100个字节,从结尾取100个字节,然后将它们合并,并使用哈希算法计算得到一个哈希值,将其作为图片的唯一标识。
使用这个唯一标识判断图片是否在图库中,这可以减少甚多工作量。
应用三:数据校验
在传输消息的过程中,我们担心通信数据被人篡改,这时就可以使用哈希函数进行数据校验。比如BT协议中就使用哈希栓发进行数据校验。
应用四:散列函数
在散列表那一篇中我们就讲过散列函数的应用,相比于其它应用,散列函数对于散列算法冲突的要求低很多(我们可以通过开放寻址法或链表法解决冲突),同时散列函数对于散列算法是否能逆向解密也并不关心。
散列函数比较在意函数的执行效率,至于其它要求,在之前的我们已经讲过,就不再赘述了。
接下来的三个应用主要是在分布式系统中的应用
应用五:负载均衡
复杂均衡的算法很多,如何实现一个会话粘滞的负载均衡算法呢?也就是说,我们需要在同一个客户端上,在一次会话中的所有请求都路由到同一个服务器上。
最简单的办法是我们根据客户端的 IP 地址或会话 ID 创建一个映射关系。但是这样很浪费内存,客户端上线下线,服务器扩容等都会导致映射失效,维护成本很大。
借助哈希算法,我们可以很轻松的解决这些问题:对客户端的 IP 地址或会话 ID 计算哈希值,将取得的哈希值域服务器的列表的大小进行取模运算,最后得到的值就是被路由到的服务器的编号。
应用六:数据分片
假设有一个非常大的日志文件,里面记录了用户的搜索关键词,我们想要快速统计出每个关键词被搜索的次数,该怎么做呢?
分析一下,这个问题有两个难点:一是搜索日志很大,没办法放到一台机器的内存中;二是如果用一台机器处理这么大的数据,处理时间会很长。
针对这两个难点,我们可以先对数据进行分片,然后使用多台机器处理,提高处理速度。具体思路:使用 n 台机器并行处理,从日志文件中读出每个搜索关键词,通过哈希函数计算哈希值,然后用 n 取模,最终得到的值就是被分配的机器编号。
这样,相同的关键词被分配到了相同的机器上,不同机器只要记录属于自己那部分的关键词的出现次数,最终合并不同机器上的结果即可。
针对这种海量数据的处理问题,我们都可以采用多机分布式处理。借助这种分片思路,可以突破单机内存、CPU等资源的限制。
应用七:分布式存储
处理思路和上面出现的思路类似:对数据进行哈希运算,对机器数取模,最终将存储数据(可能是硬盘存储,或者是缓存分配)分配到不同的机器上。
但是,如果数据增多,我们需要进行扩容,这就会非常麻烦。如果我们之前有 10 台机器,现在添加一台服务器,11台服务器取模运算后的数据就会发生变化: 哈希算法-分布式存储的扩容问题.jpg你可以看一下上图,你会发现之前存储的数据在新的存储规则下全部失效,这种情况是灾难性的。面对这种情况,我们就需要使用一致性哈希算法。
假设我们有 k 个机器,数据的哈希值的范围是[0, MAX]。我们将整个范围划分成 m 个小区间(m 远大于 k),每个机器负责 m/k 个小区间。当有新机器加入的时候,我们就将某几个小区间的数据,从原来的机器中搬移到新的机器中。这样,既不用全部重新哈希、搬移数据,也保持了各个机器上数据数量的均衡。
一致性哈希算法的基本思想就是这么简单。除此之外,它还会借助一个虚拟的环和虚拟结点,更加优美地实现出来。这里我就不展开讲了,如果感兴趣,你可以看下这里。
小结
哈希算法是应用非常广泛的算法,你可以回顾上面的七个应用感受一下。
其实在这里我想说的是一个思想:用优势弥补不足。
例如,在计算机中,数据的计算主要依赖 CPU ,数据的存储交换主要依赖内存。两者一起配合才能实现各种功能,而两者在性能上依然无法匹配,这种差距主要是:CPU运算性能对内存的要求远高于现在的内存能提供的性能。
也就是说,CPU运算很快,内存相对较慢,为了抹平这种差距,工程师们想了很多方法。在我看来,散列表的使用就是利用电脑的高计算性能(优势)去弥补内存速度(不足)的不足,你仔细思考散列表的执行过程,就会明白我的意思。
以上就是哈希的全部内容
注:本文章的主要内容来自我对极客时间app的《数据结构与算法之美》专栏的总结,我大量引用了其中的代码和截图,如果想要了解具体内容,可以前往极客时间
网友评论