美文网首页
几个卷积神经网络Backbone网络结构

几个卷积神经网络Backbone网络结构

作者: zeolite | 来源:发表于2021-06-10 00:55 被阅读0次

    做个笔记
    VGG16

    import torch
    from torch import nn
    import numpy as np
    
    
    class VGG16(nn.Module):
        def __init__(self):
            super(VGG16, self).__init__()
            self.features = nn.Sequential(
                nn.Conv2d(3, 64, 3, 1, 1),
                nn.ReLU(inplace=True),
                nn.Conv2d(64, 64, 3, 1, 1),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(2, 2),
                nn.Conv2d(64, 128, 3, 1, 1),
                nn.ReLU(inplace=True),
                nn.Conv2d(128, 128, 3, 1, 1),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(2, 2),
                nn.Conv2d(128, 256, 3, 1, 1),
                nn.ReLU(inplace=True),
                nn.Conv2d(256, 256, 3, 1, 1),
                nn.ReLU(inplace=True),
                nn.Conv2d(256, 256, 3, 1, 1),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(2, 2),
                nn.Conv2d(256, 512, 3, 1, 1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, 1, 1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, 1, 1),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(2, 2),
                nn.Conv2d(512, 512, 3, 1, 1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, 1, 1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, 1, 1),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(2, 2)
            )
            self.avgpool = nn.AdaptiveAvgPool2d(output_size=(7, 7))
            self.classifier = nn.Sequential(
                nn.Linear(25088, 4096, bias=True),
                nn.ReLU(inplace=True),
                nn.Dropout(0.5),
                nn.Linear(4096, 4096, bias=True),
                nn.ReLU(inplace=True),
                nn.Dropout(0.5),
                nn.Linear(4096, 1000, bias=True)
            )
    
        def forward(self, x):
            x = self.features(x)
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.classifier(x)
            return x
    
    
    if __name__ == '__main__':
        image = np.random.randn(1, 3, 224, 224)
        image = torch.tensor(image, dtype=torch.float32)
    
        model = VGG16()
        print(model)
        output = model(image)
        print(output.shape)
    

    这么堆叠写是因为我想看结构呀,所以没有抽出公共代码。
    AlexNet

    import torch
    from torch import nn
    import numpy as np
    
    
    class AlexNet(nn.Module):
    
        def __init__(self):
            super().__init__()
            self.features = nn.Sequential(
                nn.Conv2d(3, 64, 11, 4, 2),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(3, 2),
                nn.Conv2d(64, 192, 5, 1, 2),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(3, 2),
                nn.Conv2d(192, 384, 3, 1, 1),
                nn.ReLU(inplace=True),
                nn.Conv2d(384, 256, 3, 1, 1),
                nn.ReLU(inplace=True),
                nn.Conv2d(256, 256, 3, 1, 1),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(3, 2)
            )
            self.avgpool = nn.AdaptiveAvgPool2d(output_size=(6, 6))
            self.classifier = nn.Sequential(
                nn.Dropout(0.5),
                nn.Linear(9216, 4096, bias=True),
                nn.ReLU(inplace=True),
                nn.Dropout(0.5),
                nn.Linear(4096, 4096, bias=True),
                nn.ReLU(inplace=True),
                nn.Linear(4096, 1000, bias=True)
            )
    
        def forward(self, x):
            x = self.features(x)
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.classifier(x)
            return x
    
    
    if __name__ == '__main__':
        image = np.random.randn(1, 3, 224, 224)
        image = torch.tensor(image, dtype=torch.float32)
        model = AlexNet()
        output = model(image)
        print(output.shape)
    

    ResNet18

    import torch
    from torch import nn
    import numpy as np
    
    
    class BasicBlock(nn.Module):
        def __init__(self, in_channel, out_channel, stride=1, isDownsample=False):
            super(BasicBlock, self).__init__()
            self.isDownsample = isDownsample
            self.conv1 = nn.Conv2d(in_channel, out_channel, 3, stride, 1, bias=False)
            self.bn1 = nn.BatchNorm2d(out_channel)
            self.relu = nn.ReLU(inplace=True)
            self.conv2 = nn.Conv2d(out_channel, out_channel, 3, 1, 1, bias=False)
            self.bn2 = nn.BatchNorm2d(out_channel)
    
            self.downsample = None
            if isDownsample:
                self.downsample = nn.Sequential(
                    nn.Conv2d(in_channel, out_channel, 1, 2, bias=False),
                    nn.BatchNorm2d(out_channel)
                )
    
        def forward(self, x):
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
            out = self.conv2(out)
            out = self.bn2(out)
    
            if self.isDownsample:
                out += self.downsample(x)
            return out
    
    
    class ResNet(nn.Module):
    
        def __init__(self):
            super(ResNet, self).__init__()
    
            self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
            self.bn1 = nn.BatchNorm2d(64)
            self.relu = nn.ReLU(inplace=True)
            self.maxpool = nn.MaxPool2d(3, 2, padding=1)
    
            self.layer1 = nn.Sequential(
                BasicBlock(64, 64),
                BasicBlock(64, 64)
            )
    
            self.layer2 = nn.Sequential(
                BasicBlock(64, 128, stride=2, isDownsample=True),
                BasicBlock(128, 128)
    
            )
    
            self.layer3 = nn.Sequential(
                BasicBlock(128, 256, stride=2, isDownsample=True),
                BasicBlock(256, 256)
            )
    
            self.layer4 = nn.Sequential(
                BasicBlock(256, 512, stride=2, isDownsample=True),
                BasicBlock(512, 512)
            )
            self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1))
            self.fc = nn.Linear(512, 1000, bias=True)
    
        def forward(self, x):
            x = self.conv1(x)
            x = self.bn1(x)
            x = self.relu(x)
            x = self.maxpool(x)
            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)
            x = self.layer4(x)
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)
            return x
    
    
    if __name__ == '__main__':
        model = ResNet()
        image = np.random.randn(1, 3, 224, 224)
        image = torch.tensor(image, dtype=torch.float32)
        output = model(image)
        print(model)
        print(output.shape)
    
    

    GoogleLeNet
    output是主干输出, output_1是第一个辅助输出,output_2是第二个辅助输出

    import torch
    from torch import nn
    import numpy as np
    
    
    class BasicConv2d(nn.Module):
    
        def __init__(self, in_channel, out_channel, kernel_size, stride, padding=0):
            super(BasicConv2d, self).__init__()
            self.conv = nn.Conv2d(in_channel, out_channel, kernel_size, stride, padding, bias=False)
            self.bn = nn.BatchNorm2d(out_channel)
    
        def forward(self, x):
            x = self.conv(x)
            x = self.bn(x)
            return x
    
    
    class InceptionAux(nn.Module):
    
        def __init__(self, in_channel, out_channel):
            super(InceptionAux, self).__init__()
            self.avgpool = nn.AdaptiveAvgPool2d(output_size=(4, 4))
            self.conv = BasicConv2d(in_channel, out_channel, 1, 1)
            self.fc1 = nn.Linear(2048, 1024, bias=True)
            self.fc2 = nn.Linear(1024, 1000, bias=True)
    
        def forward(self, x):
            x = self.avgpool(x)
            x = self.conv(x)
            x = torch.flatten(x, 1)
            x = self.fc1(x)
            x = self.fc2(x)
            return x
    
    
    class Inception(nn.Module):
    
        def __init__(self, in_channel, out_branch1, out_branch2_1, out_branch2_2, out_branch3_1, out_branch3_2,
                     out_branch4):
            super(Inception, self).__init__()
            self.branch1 = BasicConv2d(in_channel, out_branch1, 1, 1)
            self.branch2 = nn.Sequential(
                BasicConv2d(in_channel, out_branch2_1, 1, 1),
                BasicConv2d(out_branch2_1, out_branch2_2, 3, 1, 1)
            )
            self.branch3 = nn.Sequential(
                BasicConv2d(in_channel, out_branch3_1, 1, 1),
                BasicConv2d(out_branch3_1, out_branch3_2, 3, 1, 1)
            )
            self.branch4 = nn.Sequential(
                nn.MaxPool2d(3, 1, padding=1),
                BasicConv2d(in_channel, out_branch4, 1, 1)
            )
    
        def forward(self, x):
            # print('0:', x.shape)
            branch1 = self.branch1(x)
            # print('1:', branch1.shape)
            branch2 = self.branch2(x)
            # print('2:', branch2.shape)
            branch3 = self.branch3(x)
            # print('3:', branch3.shape)
            branch4 = self.branch4(x)
            # print('4:', branch4.shape)
            out = torch.cat((branch1, branch2, branch3, branch4), dim=1)
            return out
    
    
    class GoogLeNet(nn.Module):
    
        def __init__(self):
            super(GoogLeNet, self).__init__()
            self.conv1 = BasicConv2d(3, 64, 7, 2, 3)
            self.maxpool1 = nn.MaxPool2d(3, 2)
            self.conv2 = BasicConv2d(64, 64, 1, 1)
            self.conv3 = BasicConv2d(64, 192, 3, 1, 1)
            self.maxpool2 = nn.MaxPool2d(3, 2)
            self.inception3a = Inception(in_channel=192, out_branch1=64, out_branch2_1=96, out_branch2_2=128,
                                         out_branch3_1=16, out_branch3_2=32, out_branch4=32)
            self.inception3b = Inception(in_channel=256, out_branch1=128, out_branch2_1=128, out_branch2_2=192,
                                         out_branch3_1=32, out_branch3_2=96, out_branch4=64)
            self.maxpool3 = nn.MaxPool2d(3, 2)
            self.inception4a = Inception(in_channel=480, out_branch1=192, out_branch2_1=96, out_branch2_2=208,
                                         out_branch3_1=16, out_branch3_2=48, out_branch4=64)
            self.inception4b = Inception(in_channel=512, out_branch1=160, out_branch2_1=112, out_branch2_2=224,
                                         out_branch3_1=24, out_branch3_2=64, out_branch4=64)
            self.inception4c = Inception(in_channel=512, out_branch1=128, out_branch2_1=128, out_branch2_2=256,
                                         out_branch3_1=24, out_branch3_2=64, out_branch4=64)
            self.inception4d = Inception(in_channel=512, out_branch1=112, out_branch2_1=144, out_branch2_2=288,
                                         out_branch3_1=32, out_branch3_2=64, out_branch4=64)
            self.inception4e = Inception(in_channel=528, out_branch1=256, out_branch2_1=160, out_branch2_2=320,
                                         out_branch3_1=32, out_branch3_2=128, out_branch4=128)
            self.maxpool4 = nn.MaxPool2d(2, 2)
            self.inception5a = Inception(in_channel=832, out_branch1=256, out_branch2_1=160, out_branch2_2=320,
                                         out_branch3_1=32, out_branch3_2=128, out_branch4=128)
            self.inception5b = Inception(in_channel=832, out_branch1=384, out_branch2_1=192, out_branch2_2=384,
                                         out_branch3_1=48, out_branch3_2=128, out_branch4=128)
            self.aux1 = InceptionAux(512, 128)
            self.aux2 = InceptionAux(528, 128)
            self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1))
            self.dropout = nn.Dropout(0.2, inplace=False)
            self.fc = nn.Linear(1024, 1000, bias=True)
    
        def forward(self, x):
            output = self.conv1(x)
            output = self.maxpool1(output)
            output = self.conv2(output)
            output = self.conv3(output)
            output = self.maxpool2(output)
            output = self.inception3a(output)
            output = self.inception3b(output)
            output = self.maxpool3(output)
            output = self.inception4a(output)
    
            output_1 = self.aux1(output)
            softmax = nn.Softmax(dim=1)
            output_1 = softmax(output_1)
    
            output = self.inception4b(output)
            output = self.inception4c(output)
            output = self.inception4d(output)
    
            output_2 = self.aux2(output)
            output_2 = softmax(output_2)
    
            output = self.inception4e(output)
            output = self.inception5a(output)
            output = self.inception5b(output)
            output = self.avgpool(output)
            output = torch.flatten(output, 1)
            output = self.fc(output)
    
            output = softmax(output)
    
            return [output, output_1, output_2]
    
    
    if __name__ == '__main__':
        image = np.random.randn(1, 3, 224, 224)
        image = torch.tensor(image, dtype=torch.float32)
    
        model = GoogLeNet()
        outputs = model(image)
        for out in outputs:
            out = out.detach().numpy()
            max = np.argmax(out, axis=1)
            print(out[0, max])
    
    

    相关文章

      网友评论

          本文标题:几个卷积神经网络Backbone网络结构

          本文链接:https://www.haomeiwen.com/subject/sepjeltx.html