NIPS 2019
-
Grid Saliency for Context Explanations of Semantic Segmentation
-
Deliberative Explanations: visualizing network insecurities
-
On the (In)fidelity and Sensitivity for Explanations
麻蛋,太难了看不懂 -
CXPlain: Causal Explanations for Model Interpretation under Uncertainty
-
GNNExplainer: Generating Explanations for Graph Neural Networks
-
✔️Saccader: Accurate, Interpretable Image Classification with Hard Attentionf
-
✔️Fooling Neural Network Interpretations via Adversarial Model Manipulation
这篇文章和AAAI的1,以及Arvix的1有很大的相似性。
本文训练了网络的参数,使得保持目标图像的类别不变的情况下,interpretability解释发生很大的变化。比如,向图像边缘变化,曾经的topk不再是topk等等。 -
Learning Dynamics of Attention: Human Prior for Interpretable Machine Reasoning
-
A Benchmark for Interpretability Methods in Deep Neural Networks
12.✔️ Towards Automatic Concept-based Explanations
ICML 2019
-
Bias Also Matters: Bias Attribution for Deep Neural Network Explanation
use bias to generate explanation -
Explaining Deep Neural Networks with a Polynomial Time Algorithm for Shapley Value Approximation
-
Interpreting Adversarially Trained Convolutional Neural Networks
用smoothed backpropagation 解释了一种adversariallly trained network的robustness -
On the Connection Between Adversarial Robustness and Saliency Map Interpretability
ICCV 2019
ICLR2019
1.✔️ LEARNING WHAT AND WHERE TO ATTEND
提出一个click maps游戏,让人标记显著的区域,然后设计网络,提取soft attention层,训练的时候设计loss,让soft attention层和人类标记的重要区域相似。
- ✔️Explaining Image Classifiers by Counterfactual Generation
针对Interpolation的方法的两个问题进行改进:
- 利用droupout改进生成很多mask耗时的问题。
- 利用GAN改进遮挡图片时用的不是环境信息(distribution改变)的问题。
3.✔️ VISUAL EXPLANATION BY INTERPRETATION: IMPROVING VISUAL FEEDBACK CAPABILITIES OF DEEP NEURAL NETWORKS]
generate visual explanation same as CAM
create a fake flower dataset.
- ✔️APPROXIMATING CNNS WITH BAG-OF-LOCAL FEATURES MODELS WORKS SURPRISINGLY WELL
ON IMAGENET
CVPR2019
-
Learning to Explain with Complemental Examples
ICML的文章Learning to Explain: An Information-Theoretic Perspective on Model Interpretation是这篇文章的基础,不过我看不懂啊啊啊啊啊啊啊啊啊啊。。。。 -
Attention Branch Network:
Learning of Attention Mechanism for Visual Explanation -
Interpretable and Fine-Grained Visual Explanations for
Convolutional Neural Networks
AAAI2019
- ✔️Interpretation of Neural Networks is Fragile
use adversarial examples to attack the network. make the network output unchanged but the attention map changed
Arxiv
ICML 2018
-
Learning to Explain: An Information-Theoretic Perspective
on Model Interpretation -
A Theoretical Explanation for Perplexing Behaviors of Backpropagation-based Visualizations
-
Discovering Interpretable Representations for Both Deep Generative and Discriminative Models
ICLR2018
-
LEARNING HOW TO EXPLAIN NEURAL NETWORKS: PATTERNNET AND PATTERNATTRIBUTION
-
Revealing interpretable object representations from human behavior
NIPS2017
-
Real Time Image Saliency for Black Box Classifiers
类似Ruth Fong的方法,和RISE/LIME是一个类型的,都是image perturbation。
用到了adversarial training的思路。使mask的面积尽量小,而且尽量的平滑。
训练过程没有看
网友评论