一、用属性替代 getter 或 setter 方法
以下代码中包含手动实现的 getter(get_ohms
) 和 setter(set_ohms
) 方法:
class OldResistor(object):
def __init__(self, ohms):
self._ohms = ohms
self.voltage = 0
self.current = 0
def get_ohms(self):
return self._ohms
def set_ohms(self, ohms):
self._ohms = ohms
r0 = OldResistor(50e3)
print(f'Before: {r0.get_ohms()}')
r0.set_ohms(10e3)
print(f'After: {r0.get_ohms()}')
# => Before: 50000.0
# => After: 10000.0
这些工具方法有助于定义类的接口,使得开发者可以方便地封装功能、验证用法并限定取值范围。
但是在 Python 语言中,应尽量从简单的 public 属性写起:
class Resistor(object):
def __init__(self, ohms):
self.ohms = ohms
self.voltage = 0
self.current = 0
r1 = Resistor(50e3)
print(f'Before: {r1.ohms}')
r1.ohms = 10e3
print(f'After: {r1.ohms}')
# => Before: 50000.0
# => After: 10000.0
访问实例的属性则可以直接使用 instance.property
这样的格式。
如果想在设置属性的同时实现其他特殊的行为,如在对上述 Resistor
类的 voltage
属性赋值时,需要同时修改其 current
属性。
可以借助 @property
装饰器和 setter
方法实现此类需求:
from resistor import Resistor
class VoltageResistor(Resistor):
def __init__(self, ohms):
super().__init__(ohms)
self._voltage = 0
@property
def voltage(self):
return self._voltage
@voltage.setter
def voltage(self, voltage):
self._voltage = voltage
self.current = self._voltage / self.ohms
r2 = VoltageResistor(1e3)
print(f'Before: {r2.current} amps')
r2.voltage = 10
print(f'After: {r2.current} amps')
Before: 0 amps
After: 0.01 amps
此时设置 voltage
属性会执行名为 voltage
的 setter
方法,更新当前对象的 current
属性,使得最终的电流值与电压和电阻相匹配。
@property 的其他使用场景
属性的 setter
方法里可以包含类型验证和数值验证的代码:
from resistor import Resistor
class BoundedResistor(Resistor):
def __init__(self, ohms):
super().__init__(ohms)
@property
def ohms(self):
return self._ohms
@ohms.setter
def ohms(self, ohms):
if ohms <= 0:
raise ValueError('ohms must be > 0')
self._ohms = ohms
r3 = BoundedResistor(1e3)
r3.ohms = -5
# => ValueError: ohms must be > 0
甚至可以通过 @property
防止继承自父类的属性被修改:
from resistor import Resistor
class FixedResistance(Resistor):
def __init__(self, ohms):
super().__init__(ohms)
@property
def ohms(self):
return self._ohms
@ohms.setter
def ohms(self, ohms):
if hasattr(self, '_ohms'):
raise AttributeError("Can't set attribute")
self._ohms = ohms
r4 = FixedResistance(1e3)
r4.ohms = 2e3
# => AttributeError: Can't set attribute
要点
- 优先使用 public 属性定义类的接口,不手动实现 getter 或 setter 方法
- 在访问属性的同时需要表现某些特殊的行为(如类型检查、限定取值)等,使用 @property
- @property 的使用需遵循 rule of least surprise 原则,避免不必要的副作用
- 缓慢或复杂的工作,应放在普通方法中
二、需要复用的 @property 方法
对于如下需求:
编写一个 Homework 类,其成绩属性在被赋值时需要确保该值大于 0 且小于 100。借助 @property 方法实现起来非常简单:
class Homework(object):
def __init__(self):
self._grade = 0
@property
def grade(self):
return self._grade
@grade.setter
def grade(self, value):
if not (0 <= value <= 100):
raise ValueError('Grade must be between 0 and 100')
self._grade = value
galileo = Homework()
galileo.grade = 95
print(galileo.grade)
# => 95
假设上述验证逻辑需要用在包含多个科目的考试成绩上,每个科目都需要单独计分。则 @property 方法及验证代码就要重复编写多次,同时这种写法也不够通用。
采用 Python 的描述符可以更好地实现上述功能。在下面的代码中,Exam 类将几个 Grade 实例作为自己的类属性,Grade 类则通过 __get__
和 __set__
方法实现了描述符协议。
class Grade(object):
def __init__(self):
self._value = 0
def __get__(self, instance, instance_type):
return self._value
def __set__(self, instance, value):
if not (0 <= value <= 100):
raise ValueError('Grade must be between 0 and 100')
self._value = value
class Exam(object):
math_grade = Grade()
science_grade = Grade()
first_exam = Exam()
first_exam.math_grade = 82
first_exam.science_grade = 99
print('Math', first_exam.math_grade)
print('Science', first_exam.science_grade)
second_exam = Exam()
second_exam.science_grade = 75
print('Second exam science grade', second_exam.science_grade, ', right')
print('First exam science grade', first_exam.science_grade, ', wrong')
# => Math 82
# => Science 99
# => Second exam science grade 75 , right
# => First exam science grade 75 , wrong
在对 exam 实例的属性进行赋值操作时:
exam = Exam()
exam.math_grade = 40
Python 会将其转译为如下代码:
Exam.__dict__['math_grade'].__set__(exam, 40)
而获取属性值的代码:
print(exam.math_grade)
也会做如下转译:
print(Exam.__dict__['math_grade'].__get__(exam, Exam))
但上述实现方法会导致不符合预期的行为。由于所有的 Exam 实例都会共享同一份 Grade 实例,在多个 Exam 实例上分别操作某一个属性就会出现错误结果。
second_exam = Exam()
second_exam.science_grade = 75
print('Second exam science grade', second_exam.science_grade, ', right')
print('First exam science grade', first_exam.science_grade, ', wrong')
# => Second exam science grade 75 , right
# => First exam science grade 75 , wrong
可以做出如下改动,将每个 Exam 实例所对应的值依次记录到 Grade 中,用字典结构保存每个实例的状态:
class Grade(object):
def __init__(self):
self._values = {}
def __get__(self, instance, instance_type):
if instance is None:
return self
return self._values.get(instance, 0)
def __set__(self, instance, value):
if not (0 <= value <= 100):
raise ValueError('Grade must be between 0 and 100')
self._values[instance] = value
class Exam(object):
math_grade = Grade()
writing_grade = Grade()
science_grade = Grade()
first_exam = Exam()
first_exam.math_grade = 82
second_exam = Exam()
second_exam.math_grade = 75
print('First exam math grade', first_exam.math_grade, ', right')
print('Second exam math grade', second_exam.math_grade, ', right')
# => First exam math grade 82 , right
# => Second exam math grade 75 , right
还有另外一个问题是,在程序的生命周期内,对于传给 __set__
的每个 Exam 实例来说,_values
字典都会保存指向该实例的一份引用,导致该实例的引用计数无法降为 0 从而无法被 GC 回收。
解决方法是将普通字典替换为 WeakKeyDictionary
:
from weakref import WeakKeyDictionary
self._values = WeakKeyDictionary()
网友评论