美文网首页
守恒定律by武斌

守恒定律by武斌

作者: 闪现过来奶我 | 来源:发表于2019-03-23 12:20 被阅读0次

守恒定律

知识点

  • 动量守恒、角动量守恒的直观感受
  • 动量守恒的方程
  • 角动量守恒的方程
    • 约定好正方向
    • 初态时,写出各个物件的角动量L_{i}(注意正负号)
    • 末态时,写出各个物件的角动量L_{j}(注意正负号)
    • 然后,列方程为:\sum_{i}L_{i}=\sum_{j}L_{j}
tip

  • 相比对单词的辨析进行死记硬背,不如记几个例句。
  • 相比对物理概念进行全方位多角度的分析,不如记几个模型。
表达题

  • 动量守恒和角动量守恒的充要条件分别是

解答:
动量守恒的充要条件:当系统不受外力或所受外力的矢量和为零
角动量守恒的充要条件:当系统所受的外力矩为零

  • 借助具体例子培养直观认识。动量守恒的充要条件是合外力为零。作为近似,实际生活中,内力比外力强很多时,也认为动量守恒。下面常见的物理模型中,

    (1) 爆炸瞬间;
    (2) 两个小球非弹性碰撞(部分动能转化为内能)瞬间;
    (3) 子弹打击用轻绳悬挂的小球瞬间;
    (4) 光滑地面上有车,车上有人,人在车内走动。
    (5) 小球撞击墙壁反弹。
    (6) 子弹打击用轻杆悬挂的小球瞬间;
    请思考,其中动量守恒的有( ),记住这些模型,会减少很多困扰。

解答:(1),(4),

  • 借助具体例子培养直观认识。角动量守恒的充要条件是合外力矩为零。下面常见的物理模型中,
    (1) 地球绕着太阳转;
    (2) 光滑桌面上用轻绳拽着做圆周运动;
    (3) 光滑冰面上的芭蕾舞旋转;
    (4) 子弹打击用轻杆悬挂着的小球瞬间。
    (5) 小球打击旋转的滑轮的瞬间。
    (6) 绕同一转轴转动的两个飞轮,彼此啮合的瞬间;
    请思考,其中角动量守恒的有( ),记住这些模型,会减少很多困扰。

解答: (2),(3),(4),(5),(6)

  • 请记下角动量的核心公式,在角动量守恒中会反复使用。圆周运动的质点和定轴转动的刚体,角动量分别为

解答:圆周运动的质点:L=mvrsin\theta
定轴转动的刚体:L=J\omega

  • 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为I_{0},角速度为\omega_{0}。然后她将两臂收回,使转动惯量减少为\frac{1}{2}I_{0}.设这时她转动的角速度变为\omega,则角动量守恒的方程为

解答:I_{0}\omega_{0}=\frac{1}{2}I_{0}\omega

  • 一圆盘(M,R)绕垂直于盘面的水平光滑固定轴O转动,转速为\omega_{0}. 如图射来一个质量为m,速度大小为v_{0}的子弹,子弹射入圆盘并且留在盘边缘上。设子弹射入后的瞬间,圆盘的角速度\omega。约定逆时针转时角动量为正。
    则初态时,将子弹速度沿切向(等效成圆周运动,从而得到角动量)和法向分解,其切向速度和角动量分别为
    (1) v_{0}, mRv_{0}
    (2) v_{0}\sin\theta, mRv_{0}\sin\theta
    (3) v_{0}\sin\theta, -mRv_{0}\sin\theta
    初态的总角动量为
    (4) \frac{1}{2}MR^{2}\omega_{0}-mRv_{0}\sin\theta
    (5) \frac{1}{2}MR^{2}\omega_{0}+mRv_{0}\sin\theta
    末态的总角动量为
    (6) \frac{1}{2}MR^{2}\omega
    (7) \frac{1}{2}MR^{2}\omega+mR^{2}\omega
    核心方程是为
    (8) \frac{1}{2}MR^{2}\omega_{0}-mRv_{0}\sin\theta=\frac{1}{2}MR^{2}\omega+mR^{2}\omega
    (9) \frac{1}{2}MR^{2}\omega_{0}+mR^{2}\omega_{0}=\frac{1}{2}MR^{2}\omega+mR^{2}\omega
    以上正确的是( )

解答:(3),(4),(8)

  • 一圆盘(M,R)绕垂直于盘面的水平光滑固定轴O转动,转速为\omega_{0}. 如图射来两个质量同为m,速度大小同为v_{0},方向相反,子弹射入圆盘并且留在盘边缘上。设子弹射入后的瞬间,圆盘的角速度\omega。约定逆时针转时角动量为正。
    则初态时,总角动量为
    (1) \frac{1}{2}MR^{2}\omega_{0}-2mRv_{0}
    (2) \frac{1}{2}MR^{2}\omega_{0}
    末态的总角动量为
    (3) \frac{1}{2}MR^{2}\omega
    (4) \frac{1}{2}MR^{2}\omega+2mR^{2}\omega
    核心方程是为
    (5) \frac{1}{2}MR^{2}\omega_{0}-2mRv_{0}=\frac{1}{2}MR^{2}\omega+2mR^{2}\omega
    (6) \frac{1}{2}MR^{2}\omega_{0}=\frac{1}{2}MR^{2}\omega+2mR^{2}\omega
    以上正确的是

解答:(2),(4),(6)

  • 角动量守恒的计算题:有一质量为M、长为l的均匀细棒,平放在光滑的水平桌面上,以角速度\omega_{0}绕通过端点O顺时针转动。另有质量为m,初速为v_{0}的小滑块,与棒的底端A点相撞。碰撞后的瞬间,细棒反转,且角速度为\omega_{1};小滑块反向,速率为v_{1},如图所示。规定顺时针转动方向为正。
    则初态时,总角动量为
    (1) \frac{1}{3}Ml^{2}\cdot\omega_{0}+ml\cdot v_{0}
    (2) \frac{1}{3}Ml^{2}\cdot\omega_{0}-ml\cdot v_{0}
    末态的总角动量为
    (3) \frac{1}{3}Ml^{2}\cdot\omega_{1}-ml\cdot v_{1}
    (4) -\frac{1}{3}Ml^{2}\cdot\omega_{1}+ml\cdot v_{1}
    核心方程是为
    (5) \frac{1}{3}Ml^{2}\cdot\omega_{0}+ml\cdot v_{0}=\frac{1}{3}Ml^{2}\cdot\omega_{1}-ml\cdot v_{1}
    (6) \frac{1}{3}Ml^{2}\cdot\omega_{0}-ml\cdot v_{0}=-\frac{1}{3}Ml^{2}\cdot\omega_{1}+ml\cdot v_{1}
    以上正确的是

解答:(2),(4),(6)

相关文章

  • 守恒定律by武斌

    守恒定律 知识点 动量守恒、角动量守恒的直观感受 动量守恒的方程 角动量守恒的方程约定好正方向初态时,写出各个物件...

  • 机械能守恒定律 by 武斌

    第七讲:机械能守恒定律 数学符号 滑动摩擦系数为 对应的代码为$\mu$ 知识点 势能重力势能: 弹性势能:万有引...

  • 力矩by武斌

    力矩 知识点 力矩是矢量,描述力对转动状态的影响 力矩的直观感受,力产生转动的趋势越大,力矩越大。 力矩的矢量定义...

  • Day11:《通往财富自由之路》——问答01|付费就是捡便宜

    ——我是斌斌,这是我发愿在得到日更留言365天的第11天。 今天学习到一个“麻烦守恒定律”,以前在学校学习过“能量...

  • 善用时间序言和第一章

    看了叶武斌老师的善用时间,终于知道老师名叫叶武斌,而我听喜马拉雅的时候一直听成又斌老师,我相信我不是唯一一个。 人...

  • 转动定律by武斌

    知识点 类比法理解牛顿第二定律和转动定律 单个刚体的转动 转动、平动组合体:先根据隔离法对各个物件进行简单的受力分...

  • 角动量by武斌

    知识点 动量的直观感受碰撞模型匀速圆周运动的模型 角动量的直观感受圆周运动速度变化的模型 质点的角动量质点对原点O...

  • 一地鸡毛(十二)

    12. “哎,武斌从办公室出来了!快散了!” 众人一轰而散。看着武斌铁青着脸,低声不语的样子,志国感到无比的...

  • 我还能说什么

    真是没救了 武小斌啊武小斌 又到这个点了,难道自己前两天说的话就是放屁么? 玩游戏玩游戏 有什么意思 技术又不行 ...

  • 我在武汉

    武斌跟文心商量好了,今年过年带她回武汉老家见他的母亲。 除夕的前几天,武斌给母亲打去了电话, “妈,今年我带文心回...

网友评论

      本文标题:守恒定律by武斌

      本文链接:https://www.haomeiwen.com/subject/stojvqtx.html