美文网首页机器学习与计算机视觉
计算机视觉快速特征描述子Dense SIFT

计算机视觉快速特征描述子Dense SIFT

作者: GarfieldEr007 | 来源:发表于2015-12-16 20:12 被阅读1168次
Dense SIFT.png

VLFeat implements a fast dense version of SIFT, called vl_dsift
. The function is roughly equivalent to running SIFT on a dense gird of locations at a fixed scale and orientation. This type of feature descriptors is often uses for object categorization.

Dense SIFT as a faster SIFT

The main advantage of using vl_dsift
over vl_sift
is speed. To see this, load a test image
I = vl_impattern('roofs1') ;I = single(vl_imdown(rgb2gray(I))) ;

To check the equivalence of vl_disft
and vl_sift
it is necessary to understand in detail how the parameters of the two descriptors are related.
Bin size vs keypoint scale. DSIFT specifies the descriptor size by a single parameter, size
, which controls the size of a SIFT spatial bin in pixels. In the standard SIFT descriptor, the bin size is related to the SIFT keypoint scale by a multiplier, denoted magnif
below, which defaults to 3
. As a consequence, a DSIFT descriptor with bin size equal to 5 corresponds to a SIFT keypoint of scale 5/3=1.66.

Smoothing. The SIFT descriptor smoothes the image according to the scale of the keypoints (Gaussian scale space). By default, the smoothing is equivalent to a convolution by a Gaussian of variance s^2 - .25
, where s
is the scale of the keypoint and .25
is a nominal adjustment that accounts for the smoothing induced by the camera CCD.

Thus the following code produces equivalent descriptors using either DSIFT or SIFT:
binSize = 8 ;magnif = 3 ;Is = vl_imsmooth(I, sqrt((binSize/magnif)^2 - .25)) ;[f, d] = vl_dsift(Is, 'size', binSize) ;f(3,:) = binSize/magnif ;f(4,:) = 0 ;[f_, d_] = vl_sift(I, 'frames', f) ;

The difference, of course, is that DSIFT is much faster.

Left: accuracy of the slow and fast dense SIFT implementations in vl_dsift
compared to the SIFT baseline from vl_sift
. Right: speedup. The fast version is less similar to the original SIFT descriptors but from 30 to 70 times faster than SIFT. Notice that the equivalence of the descriptors does not necessarily indicate that one would work better than the other in applications.

PHOW descriptors
The PHOW features [1] are a variant of dense SIFT descriptors, extracted at multiple scales. A color version, named PHOW-color, extracts descriptors on the three HSV image channels and stacks them up. A combination of vl_dsift
and vl_imsmooth
can be used to easily and efficiently compute such features.
VLFeat includes a simple wrapper, vl_phow
, that does exactly this:
im = vl_impattern('roofs1') ;[frames, descrs]=vl_phow(im2single(im)) ;

Note that this typically generate a very large number of features. In this example, there are 162,574 features.
References
[1] A. Bosch, A. Zisserman, and X. Munoz. Image classifcation using random forests and ferns. In Proc. ICCV, 2007.

from VLFeat.

相关文章

  • 计算机视觉快速特征描述子Dense SIFT

    VLFeat implements a fast dense version of SIFT, called vl...

  • Python进行SIFT图像对准

    基础方法 SIFT特征点和特征描述提取 SIFT算法广泛使用在计算机视觉领域,在OpenCV中也对其进行了实现。 ...

  • 各种特征描述子之间的比较

    背景 本文主要是为了便于以后查询各种特征描述子之间的各种特性而写。 比较 SIFT:128维向量SURF:64维向量

  • 计算机视觉--SIFT特征

    SIFT(scale invariant feature transform)尺度不变特征变换,具有尺度、选装、光...

  • 局部图像特征描述总结

    局部图像特征描述是计算机视觉的一个基本研究问题,在寻找图像中的对应点以及物体特征描述中有着重要的作用。它是许多方法...

  • 2Notes《Multi-focus image fusion

    这篇文章是基于像素点dense SIFT进行融合处理,其也能解决原图像mis-regisistration的情况。...

  • Matlab下使用VLFeat工具包

    VLFeat是一个开源的工具包,提供了很多计算机视觉中的算法,比如SIFT、HoG等等,支持在很多中平台中使用。要...

  • 卷积神经网络

    第一课:计算机视觉 受益于深度学习,计算机视觉是目前快速发展的领域之一,深度学习的计算机视觉现在能够帮助自动驾驶汽...

  • ORB特征描述子

    之所以会要说到ORB特征描述,是因为在做图像拼接时,选取特征点时,我所采用的是SURF特征,因为相比于SIFT特征...

  • 学习笔记:Python深度学习----深度学习实践

    深度学习用于计算机视觉 卷积运算 密集连接层和卷积层的根本区别在于Dense层从输入特征空间学习到的是全局模式,c...

网友评论

    本文标题:计算机视觉快速特征描述子Dense SIFT

    本文链接:https://www.haomeiwen.com/subject/tdfphttx.html