美文网首页机器学习
个人关于机器学习的周记之八

个人关于机器学习的周记之八

作者: 周围_5d19 | 来源:发表于2018-07-20 10:15 被阅读26次

代价函数

这周将要定义代价函数的概念,这有助于我们弄清楚如何把最有可能的直线与我们的数据相拟合。如图:

在线性回归中我们有一个像这样的训练集,m代表了训练样本的数量,比如m=47 。而我们的假设函数,也就是用来进行预测的函数,是这样的线性函数形式:

假设函数

接下来我们会引入一些术语我们现在要做的便是为我们的模型选择合适的参数(parameters) θ 0和 θ 1 ,在房价问题这个例子中便是直线的斜率和在 y轴上的截距。我们选择的参数决定了我们得到的直线相对于我们的训练集的准确程度,模型所预测的值与训练集中实际值之间的差距(下图中蓝线所指)就是建模误差modeling error)。

我们的目标便是选择出可以使得建模误差的平方和能够最小的模型参数。 即使得代价函数最小

代价函数

代价函数也被称作平方误差函数,有时也被称为平方误差代价函数。我们之所以要求出误差的平方和,是因为误差平方代价函数,对于大多数问题,特别是回归问题,都是一个合理的选择。还有其他的代价函数也能很好地发挥作用,但是平方误差代价函数可能是解决回归问题最常用的手段了。

在后续课程中,我们还会谈论其他的代价函数,但我们刚刚讲的选择是对于大多数线性回归问题非常合理的。

也许这个代价函数有点抽象,可能你仍然不知道它的内涵,在接下来的几周的周记里,我们要更进一步解释代价函数J的工作原理,并尝试更直观地解释它在计算什么,以及我们使用它的目的。

相关文章

  • 个人关于机器学习的周记之八

    代价函数 这周将要定义代价函数的概念,这有助于我们弄清楚如何把最有可能的直线与我们的数据相拟合。如图: 在线性回归...

  • 个人关于机器学习的周记之四

    牙痛一直没好,在考散利痛撑着。。。。。 工欲善其事,必先利其器。对于机器学习来说,器也是非常重要的一个部分,目前主...

  • 个人关于机器学习的周记之十一

    在以前的周记我们谈到关于梯度下降算法,梯度下降是很常用的算法,它不仅被用在线性回归上和线性回归模型、平方误差代价函...

  • 个人关于机器学习的周记之五

    监督学习 对于机器学习问题而言最简单和最基本的一种:那就是监督学习。 我们用一个例子介绍什么是监督学习把正式的定义...

  • 个人关于机器学习的周记之六

    无监督学习 在这周,我将介绍第二种主要的机器学习问题。叫做无监督学习。 在上周,已经介绍了监督学习。回想当时的数据...

  • 个人关于机器学习的周记之十

    在上周,我们给出了一个数学上关于梯度下降的定义,本次我们更深入研究一下,更直观地感受一下这个算法是做什么的,以及梯...

  • 个人关于机器学习的周记之九

    这周我们将介绍梯度下降: 梯度下降是一个用来求函数最小值的算法,我们将使用梯度下降算法来求出代价函数的最小值。 梯...

  • 个人关于机器学习的周记之七

    我们学习的第一个算法是线性回归算法。在这段视频中,你会看到这个算法的概况,更重要的是你将会了解监督学习过程完整的流...

  • 个人关于机器学习的周记之一

    由于现在本人是在职自学的机器学习的知识,每周实际上能凑出来学的时间是在不多,因此找到一个比较好的学习资源很重要。在...

  • 个人关于机器学习的周记之二

    这周勤根牙发炎,很艰难(各种意义上的)一周。。 http://www.ai-start.com/ml2014/ 机...

网友评论

    本文标题:个人关于机器学习的周记之八

    本文链接:https://www.haomeiwen.com/subject/tlgcpftx.html