转载请注明出处:https://www.jianshu.com/p/73ef54fb99f4
概念
二叉树
要了解堆首先得了解一下二叉树,在计算机科学中,二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。
二叉树的每个结点至多只有二棵子树(不存在度大于 2 的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第 i 层至多有 2i - 1 个结点;深度为 k 的二叉树至多有 2k - 1 个结点;对任何一棵二叉树 T,如果其终端结点数为 n0,度为 2 的结点数为 n2,则n0 = n2 + 1。
树和二叉树的三个主要差别:
树的结点个数至少为 1,而二叉树的结点个数可以为 0
树中结点的最大度数没有限制,而二叉树结点的最大度数为 2
树的结点无左、右之分,而二叉树的结点有左、右之分
二叉树又分为完全二叉树(complete binary tree)和满二叉树(full binary tree)
如图:
满二叉树:一棵深度为 k,且有 2k - 1 个节点称之为满二叉树
完全二叉树:深度为 k,有 n 个节点的二叉树,当且仅当其每一个节点都与深度为 k 的满二叉树中序号为 1 至 n 的节点对应时,称之为完全二叉树
堆
堆(二叉堆)可以视为一棵完全的二叉树,完全二叉树的一个“优秀”的性质是,除了最底层之外,每一层都是满的,这使得堆可以利用数组来表示(普通的一般的二叉树通常用链表作为基本容器表示),每一个结点对应数组中的一个元素。
如下图,是一个堆和数组的相互关系
二叉堆一般分为两种:最大堆和最小堆。
最大堆:
最大堆中的最大元素值出现在根结点(堆顶)
堆中每个父节点的元素值都大于等于其孩子结点(如果存在)
最小堆:
最小堆中的最小元素值出现在根结点(堆顶)
堆中每个父节点的元素值都小于等于其孩子结点(如果存在)
原理
- 最大堆调整(Max_Heapify):从堆的倒数第一个非叶子节点作调整,使得子节点永远小于父节点。没有必要从叶子节点开始,叶子节点可以看作是已符合堆特点的节点。
- 创建最大堆(Build_Max_Heap):将堆所有数据重新排序
- 堆排序(HeapSort):移除位在第一个数据的根节点,并做最大堆调整。
图解:列如我们有原始数字[2 10 9 5 6 1]
下面我们用堆排序排序
原始为:
第一次:
第二次
我们得到了
代码实现:
/**
* 堆排序的主要入口方法,共两步。
*/
public void sort() {
/*
* 第一步:将数组堆化
* beginIndex = 第一个非叶子节点。
* 从第一个非叶子节点开始即可。无需从最后一个叶子节点开始。
* 叶子节点可以看作已符合堆要求的节点,根节点就是它自己且自己以下值为最大。
*/
int len = array.length - 1;
int beginIndex = (len - 1) >> 1;
for (int i = beginIndex; i >= 0; i--)
maxHeapify(i, len);
/*
* 第二步:对堆化数据排序
* 每次都是移出最顶层的根节点A[0],与最尾部节点位置调换,同时遍历长度 - 1。
* 然后从新整理被换到根节点的末尾元素,使其符合堆的特性。
* 直至未排序的堆长度为 0。
*/
for (int i = len; i > 0; i--) {
swap(0, i);
maxHeapify(0, i - 1);
}
}
private void swap(int i, int j) {
int temp = array[i];
array[i] = array[j];
array[j] = temp;
}
/**
* 调整索引为 index 处的数据,使其符合堆的特性。
*
* @param index 需要堆化处理的数据的索引
* @param len 未排序的堆(数组)的长度
*/
private void maxHeapify(int index, int len) {
int li = (index << 1) + 1; // 左子节点索引
int ri = li + 1; // 右子节点索引
int cMax = li; // 子节点值最大索引,默认左子节点。
if (li > len) return; // 左子节点索引超出计算范围,直接返回。
if (ri <= len && array[ri] > array[li]) // 先判断左右子节点,哪个较大。
cMax = ri;
if (array[cMax] > array[index]) { //若“<”这是从大到小
swap(cMax, index); // 如果父节点被子节点调换,
maxHeapify(cMax, len); // 则需要继续判断换下后的父节点是否符合堆的特性。
}
}
算法系列:
冒泡排序
选择排序
直接插入排序
二分插入排序
希尔排序
堆排序
完整代码:
Java和Kotlin代码我均放在了GitHub上,欢迎Star!
网友评论