2.1 二分分类
使用二分分类来预测图片中是否有猫
![](https://img.haomeiwen.com/i1531909/2ee8ede181d3a47a.png)
![](https://img.haomeiwen.com/i1531909/0d76e346493eeae7.png)
x:代表特征向量
y:代表标签
m:代表样本(Mtrain)的数量
矩阵X:是一个nx '*'m的矩阵
矩阵Y:1xm的矩阵
2.2 logistic回归
逻辑回归是一个用在监督学习问题的算法,这是所有输出y的结果为0或者1。逻辑回归的目标就是最小化预测结果与训练数据之间的误差。
![](https://img.haomeiwen.com/i1531909/f9c4c4a33246b716.png)
![](https://img.haomeiwen.com/i1531909/8ef4c24e8289ffb2.png)
2.3 logistic 回归损失函数
损失函数L用来衡量算法的运行情况,来衡量你的预测输出值y帽和y的实际值有多接近
![](https://img.haomeiwen.com/i1531909/4e80b30733742c01.png)
2.4 梯度下降
来训练w和b,获得使得J(w,b)最小的参数
![](https://img.haomeiwen.com/i1531909/4d7247f60420666c.png)
2.5 导数
2.14 向量化logistic 回归的输出
![](https://img.haomeiwen.com/i1531909/6ba8edf00aa74811.png)
![](https://img.haomeiwen.com/i1531909/a4cdd2f9c6c874da.png)
2.15 Python中的广播
import numpy as np
A=np.array([
[56.0,0.0,4.4,68.0],
[1.2,104.0,52.0,8.0],
[1.8,135.0,99.0,0.9]
])
print(A)
[[ 56. 0. 4.4 68. ]
[ 1.2 104. 52. 8. ]
[ 1.8 135. 99. 0.9]]
cal=A.sum(axis=0)
print(cal)
[ 59. 239. 155.4 76.9]
percentage=100*A/cal.reshape(1,4)
print(percentage)
[[ 94.91525424 0. 2.83140283 88.42652796]
[ 2.03389831 43.51464435 33.46203346 10.40312094]
[ 3.05084746 56.48535565 63.70656371 1.17035111]]
下面是几个例子
![](https://img.haomeiwen.com/i1531909/aee0920e14a8c9a6.png)
2.16 关于python/note的说明
![](https://img.haomeiwen.com/i1531909/8b8c983756e2cf95.png)
网友评论