CUDA是NVIDIA于2006年11月推出的,用于发挥NVIDIA GPU通用计算能力的编程环境,目前支持CUDA C和OpenCL(Open Computing Language)语言,计算效率高,常可加速十几倍到几十倍。相比OpenCL和Brook+,CUDAC更易于使用。另外NVIDIA对CUDA的大力支持是其他厂商所不能比拟的。
CUDA认为系统上可以用于计算的硬件包含两个部分:一个是CPU(称为主机),一个是GPU(称为设备),CPU控制/指挥GPU工作,GPU只是CPU的协处理器。目前CUDA只支持NVIDIA的GPU,而CPU由主机端编程环境负责。
CUDA是一种架构,也是一种语言。作为一种架构,它包括硬件的体系结构(G80、GT200、Fermi、Kepler)、硬件的CUDA计算能力及CUDA程序是如何映射到GPU上执行;作为一种语言,CUDA提供了能够利用GPU计算能力的方方面面的功能。CUDA的架构包括其编程模型、存储器模型和执行模型。CUDA C语言主要说明了如何定义计算内核(kernel)。CUDA架构在硬件结构、编程方式与CPU体系有极大不同,关于CUDA的具体细节读者可参考CUDA相关的书籍。
CUDA以C/C++语法为基础而设计,因此对熟悉C系列语言的程序员来说,CUDA的语法比较容易掌握。另外CUDA只对ANSI C进行了最小的扩展,以实现其关键特性:线程按照两个层次进行组织、共享存储器(shared memory)和栅栏(barrier)同步。
目前CUDA提供了两种API以满足不同人群的需要:运行时API和驱动API。运行时API基于驱动API构建,应用也可以使用驱动API。驱动API通过展示低层的概念提供了额外的控制。使用运行时API时,初始化、上下文和模块管理都是隐式的,因此代码更简明。一般一个应用只需要使用运行时API或者驱动API中的一种,但是可以同时混合使用这两种。笔者建议优先使用运行时API。
6.2.5 OpenCL
OpenCL(Open Computing Language,开放计算语言),先由Apple设计,后来交由Khronos Group维护,是异构平台并行编程的开放的标准,也是一个编程框架。Khronos Group是一个非盈利性技术组织,维护着多个开放的工业标准,并且得到了业界的广泛支持。OpenCL的设计借鉴了CUDA的成功经验,并尽可能地支持多核CPU、GPU或其他加速器。OpenCL不但支持数据并行,还支持任务并行。同时OpenCL内建了多GPU并行的支持。这使得O
网友评论