美文网首页
TopK 算法的多种实现

TopK 算法的多种实现

作者: 前端西瓜哥 | 来源:发表于2022-02-05 11:45 被阅读0次

我是前端西瓜哥,今天来整下 TopK 算法。

TopK,即求数组的最小(或最大)的 k 个数,且不要求这些数要排序返回。

这是一个非常经典的面试题。解法也是相当的多,能较好考察面试者的数据结构与算法基础。

image.png

求最小和最大的思路是一样的,我们假设要求的是最小的 k 个数。

对应的 LeetCode 题目地址有两个:

排序

最简单的方式是全排序,即对数组的所有元素都进行升序排序,然后取前面的 k 个数。通常都会用编程语言自带的排序 API,正确性有所保证。

function getLeastNumbers(arr: number[], k: number): number[] {
  return arr.sort((a, b) => a - b).slice(0, k);
};

实际开发中如果有这个需求,且数据量不大,用自带的排序方法是最稳妥的。

因为排序方法底层通常是快排这些时间复杂度优秀的排序算法,所以全排序的时间复杂度是 O(n*log(n)

在全排序的基础上,其实可以做个优化,做 局部排序。有些算法(冒泡和选择排序)的排序过程中,第 i 次迭代,都会使得第 i 个元素置于最终排好序后所在的位置。

这里我们看看魔改选择排序的实现:

function getLeastNumbers(arr: number[], k: number): number[] {
  let min: number;
  let minIdx: number;
  for (let i = 0; i < k; i++) { // 这里迭代了 k 次
    min = arr[i];
    minIdx = i;
    for (let j = i + 1; j < arr.length; j++) {
      if (arr[j] < min) {
        min = arr[j];
        minIdx = j;
      }
    }
    [arr[i], arr[minIdx]] = [arr[minIdx], arr[i]]; // 交换
  }
  return arr.slice(0, k);
};

只要我们将原来的 n 次迭代改为 k 次迭代,就能获得一个只是前 k 个数组元素做了排序的数组。

局部排序在原来时间复杂度为 O(n^2) 的排序算法的基础上,优化为了 O(k*n)

当 k 很小时,局部排序的效率要比全排序的高。

快排思想

快速排序的核心是 分治分区

限于篇幅,具体的快排原理和实现可以看我的这篇文章:快速排序的经典实现,你真的会写吗?

简单来说,快排的实现是,每次取一个基准值 pivot,将小于等于 pivot 的放到左区间,大于的放到右区间。然后针对这两个区间继续同样操作,直到区间大小小于等于 1 为止,是自上而下的递归。

原来快排对两个区间都要进行递归,现在改造为选择性地递归。

每一次分区(partition)后:

  • 如果 pivot 所在的位置小于 k,递归就可以结束了,此时数组的前 k 个数组元素就是最小的 k 个元素;

  • 如果 pivot 所在的位置在 k 的左侧,说明 pivot 的左区间可以不用排序了,小于等于 pivot 的值都在左侧。然后对右区间进行递归;

  • 如果 pivot 所在的位置在 k 的右侧,则 pivot 的右区间不用考虑了,需要对左区间递归。

这里有一个非常重要的点:每次分区分后 pivot 所在索引的值就是整个数组排过序后应该为的值。 这是我们可以不管其中一个区间的原因。

function getLeastNumbers(arr: number[], k: number): number[] {
  partition(arr, 0, arr.length - 1, k);
  return arr.slice(0, k);
};

function partition(arr: number[], lo: number, hi: number, k: number) {
  if (lo >= hi) return;
  const pivot = arr[hi];  // 这里可以改为随机选择 pivot
  let i = lo;
  for (let j = lo; j < hi; j++) {
    if (arr[j] <= pivot) {
      swap(arr, i, j);
      i++;
    }
  }
  swap(arr, i, hi);
  
  // 原本的快排的 partition 的最后是这两行,现在改为现在的下面这五行
  // partition(arr, i + 1, hi, k);
  // partition(arr, lo, i - 1, k);
  if (i < k) {
    partition(arr, i + 1, hi, k);
  } else if (i > k) {
    partition(arr, lo, i - 1, k);
  }
}

function swap(arr: number[], i: number, j: number) {
  let tmp = arr[i];
  arr[i] = arr[j];
  arr[j] = tmp;
}

平均时间复杂度是 O(n),最坏时间复杂度是 O(n^2)。不管怎样总体上都比快排效率高,除非极端情况。

大顶堆

大顶堆是个完全二叉树,特点是:任何一个节点的值都大于等于子树任意一个节点的值。

我们创建一个大小为 k 的大顶堆。先放入 k 个元素。后面想放入新元素时,先和堆顶元素(堆的最大值)对比。如果小于堆的最大元素,说明这个堆顶元素不合格,不可能为 TopK 的一员,将其出堆,然后让新元素入堆;否则新元素不入堆。

一直这样操作直到遍历完整个数组。最后这个堆就是我们要的 TopK。

JavaScript 没有内置堆或优先队列这些数据结构,就暂且不实现了。

入堆的时间复杂度是 O(log k),要入堆 n 次,所以总的时间复杂度是 O(n*log k)

如果你需要动态维护 TopK,比如网站的每日排行榜,用大顶堆方案会更合适。

结尾

总的来说,快排思想的方案时间复杂度最低,大顶堆适合需要动态维护 TopK 的情况,而全排序则适合写业务代码且数据量不大的时候。

本文首发于我的公众号:前端西瓜哥

相关文章

  • TopK 算法的多种实现

    我是前端西瓜哥,今天来整下 TopK 算法。 TopK,即求数组的最小(或最大)的 k 个数,且不要求这些数要排序...

  • topk算法问题的实现

    转自程序员编程艺术,topk实现算法 寻找最大的k个数的问题的实用范围更广,因为它牵扯到了一个Top K算法问题,...

  • 拼多多笔试

    实现 HashMap topK 有序数组求交集

  • topK算法问题

    问题描述:有 N (N>1000000)个数,求出其中的前K个最小的数(又被称作topK问题)。 这类问题似乎是备...

  • 实现TopK问题的三种算法

    在检索类的应用中往往实现TopK的应用,比如特征检索场景下,要对一个向量进行距离查询,输出距离最近的前10个向量。...

  • (12)海量数据处理

    海量数据处理主要涉及分治算法,其中包含排序、求TopK、以及查找重复的问题 (1)Top K 算法思路:(1) 局...

  • 排序算法

    一、排序算法总结 排序算法题目 排序算法快速排序堆排序归并排序 应用最小K个数(TopK问题)215.数组中的第K...

  • java实现多种排序算法

    冒泡排序 选择排序 运行结果 插入排序 运行结果 快速排序 运行结果

  • JavaScript 实现多种排序算法

    本章将介绍 JavaScript 如何实现排序,几种排序算法介绍如下图: 准备工具函数 util.js 备用: 借...

  • TOPK算法 - 线性遍历

    应用场景 在大量数据当中,寻找最大的几个值,完整排序可能会造成极大的不必要开销,所以TOPK算法很有掌握的必要 思...

网友评论

      本文标题:TopK 算法的多种实现

      本文链接:https://www.haomeiwen.com/subject/uhwekrtx.html