isoform usage是常见的RNA seq下游分析流程,常见的包也是DEXseq2。但是用它跑自己的数据一直报错,跑示例数据是能够work的。
names(x) <- value: 'names' atrribute [9] must be the same length as the vector [1]
网上很多教程都是对示例数据进行讲解,解决不了我的问题。看报错信息感觉是gff文件格式对不上,看了源代码,它的版本很久了,要求gff文件里“exon_number”为“exonic_part_number”、“transcript_id”为“transcripts”、第三列类型为“exonic_part”。要改的地方太多了,所以我自己改了它的源代码来跑。
要求输入文件有:
- 以exon为单元的reads count文件
- gff文件
获得reads count文件——HTseq
# 安装
conda install -c bioconda htseq
htseq-count -f bam -c all.exon.count.csv -n 40 --append-output -t exon -i gene_id -i exon_number \
/data/workdir/FRAL190036196.sort.bam \
/data/workdir/FRAL190036198.sort.bam \
/data/workdir/FRAL190036258.sort.bam.........\
/data/workdir/information/hg38/gencode_new.v40.gtf
# -f 输入文件格式
# -c 输出文件名
# -n 线程数
# --append-output 所有结果合并输出一个结果文件,每列为一个样本
# -t 识别gtf第三列的exon为计算reads count的单元
# -i 结果文件第一列为id,为gene_id:exon_number的格式
!非常耗时,建议用多点线程跑。一个样本单线程差不多一个半小时
在这我多输出了一列gene name,完全没必要
![](https://img.haomeiwen.com/i22667524/a5eabeea25186c30.png)
分隔各列为一个文件的脚本
# samples.txt为样本名,每行一个样本
sf="samples.txt"
for i in {2..469};
do
s_num=$((i-1))
s=$(sed -n "${s_num}p" "${sf}")
awk -v col="$((i+1))" '{OFS = "\t"} {print $1,$col}' all.exon.count.tsv > "split_sample_exon_count/${s}.txt"
done
接下来用R跑
# DEXseq分析
library("DEXSeq")
samples_label <- read.delim("D:/data/465_sample_group.txt")
countFiles <- list.files("D:/data/extData_exonnumber/", pattern=".txt$", full.names=TRUE)
gffFile <- list.files("D:/data/DEXseq", pattern="gff$", full.names=TRUE)
sampleTable <- data.frame(row.names=samples_label$Sample,
condition=samples_label$group)
sample_names <- samples_label$Sample
countFileNames <- sub("\\.txt$", "", basename(countFiles))
# 根据样本名称排序 countFiles
sorted_countFiles <- countFiles[order(match(countFileNames, sample_names))]
# 大部分都没有动,只做了细微改变
modify_DEXSeqDataSetFromHTSeq = function (sorted_countFiles, sampleTable, design = ~sample + exon +
condition:exon, gffFile = NULL){
if (!all(sapply(sorted_countFiles, class) == "character")) {
stop("The countfiles parameter must be a character vector")
}
lf <- lapply(sorted_countFiles, function(x) read.table(x, header = FALSE,
stringsAsFactors = FALSE))
if (!all(sapply(lf[-1], function(x) all(x$V1 == lf[1]$V1))))
stop("Count files have differing gene ID column.")
dcounts <- sapply(lf, `[[`, "V2")
rownames(dcounts) <- gsub("_PAR_Y","",lf[[1]][, 1])
dcounts <- dcounts[substr(rownames(dcounts), 1, 1) != "_",]
rownames(dcounts) <- sub(":", ":E", rownames(dcounts))
colnames(dcounts) <- sorted_countFiles
splitted <- strsplit(rownames(dcounts), ":")
exons <- sapply(splitted, "[[", 2)
genesrle <- sapply(splitted, "[[", 1)
if (!is.null(gffFile)) {
aggregates <- read.delim(gffFile, stringsAsFactors = FALSE, header = FALSE)
colnames(aggregates) <- c("chr", "source", "class",
"start", "end", "ex", "strand", "ex2", "attr")
aggregates$strand <- gsub("\\.", "*", aggregates$strand)
aggregates <- aggregates[which(aggregates$class == "exon"),]
aggregates$attr <- gsub("\"|=|;", " ", aggregates$attr)
aggregates$gene_id <- sub(".*gene_id\\s(\\S+).*", "\\1", aggregates$attr)
transcripts <- gsub(".*transcript_id\\s(\\S+).*", "\\1", aggregates$attr)
exonids <- gsub(".*exon_number\\s(\\S+).*", "\\1", aggregates$attr)
exoninfo <- GRanges(as.character(aggregates$chr), IRanges(start = aggregates$start,
end = aggregates$end), strand = aggregates$strand)
names(exoninfo) <- paste(aggregates$gene_id, exonids, sep = ":E")
names(transcripts) <- rownames(exoninfo)
if (!all(rownames(dcounts) %in% names(exoninfo))) {
stop("Count files do not correspond to the flattened annotation file")
}
matching <- match(rownames(dcounts), names(exoninfo))
stopifnot(all(names(exoninfo[matching]) == rownames(dcounts)))
stopifnot(all(names(transcripts[matching]) == rownames(dcounts)))
dxd <- DEXSeqDataSet(dcounts, sampleTable, design, exons,
genesrle, exoninfo[matching], transcripts[matching])
return(dxd)
}
else {
dxd <- DEXSeqDataSet(dcounts, sampleTable, design, exons,
genesrle)
return(dxd)
}
}
dxd <- modify_DEXSeqDataSetFromHTSeq(
sorted_countFiles,
sampleData=sampleTable,
design= ~sample + exon + condition:exon,
flattenedfile=gffFile)
# 差异分析
dxr <- DEXSeq(dxd)
没跑完,实在是太慢了,数据量太大,R直接死机了
网友评论