Numpy 中文用户指南 3.2 创建数组

作者: 布客飞龙 | 来源:发表于2016-03-25 11:30 被阅读246次

原文:Array creation

译者:飞龙

另见

数组创建例程

导言

数组创建的一般机制有五种:

  • 从其它Python的结构转换(如列表和元组)
  • 内置的NumPy数组创建对象(如 arange, ones, zeros以及其它)
  • 从磁盘中读取标准或自定义格式的数据
  • 通过使用字符串或者缓冲区,从原始的字节创建数组
  • 使用特殊的库函数(比如random

本节不会涉及复制和连接等扩展和转换现有数组的方法,也不会涉及创建对象数组和结构化数组。这些会在它们自己的章节中讲述。

将Python类似数组的对象转换为NumPy数组

通常,Python中排列为数组结构的数值数据可以通过array()函数来转换成数组,典型的例子就是列表和元组。具体使用方法请见array()函数的文档。一些对象也支持数组的协议,并且可以用这种方法转换成数组。辨识一个对象是否能转换为数组,最简单的方法就是在交互式环境中尝试这一方法,看看它是否有效(即Python之道)。

例如:

>>> x = np.array([2,3,1,0])
>>> x = np.array([2, 3, 1, 0])
>>> x = np.array([[1,2.0],[0,0],(1+1j,3.)]) # note mix of tuple and lists,
    and types
>>> x = np.array([[ 1.+0.j, 2.+0.j], [ 0.+0.j, 0.+0.j], [ 1.+1.j, 3.+0.j]])

内置的NumPy数组创建

NumPy具有从无到有创建数组的内置功能:

zeros(shape) 将创建一个填充为0的指定形状的数组。

>>> np.zeros((2, 3)) array([[ 0., 0., 0.], [ 0., 0., 0.]])

ones(shape) 将创建一个填充为1的数组。在其他所有方面都和zeros相同。

arange()将创建有规律的增量值数组。它的几种用法请见docstring。这里给出几个例子:

>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(2, 10, dtype=np.float)
array([ 2., 3., 4., 5., 6., 7., 8., 9.])
>>> np.arange(2, 3, 0.1)
array([ 2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9])

请注意,关于最后一个用例,有一些使用技巧,请见arrange的docstring。

linspace()将以指定数量的元素创建数组,并平分开始值和结束值。例如:

>>> np.linspace(1., 4., 6)
array([ 1. ,  1.6,  2.2,  2.8,  3.4,  4. ])

这些创建函数的好处是,可以保证元素个数、起始点和结束点,arange()一般不会指定任意的起始值、结束值和步长。

indices()将创建数组的集合(用一维数组来模拟高维数组),每一维都有表示它的变量。一个例子说明比口头描述好得多:

>>> np.indices((3,3))
array([[[0, 0, 0], [1, 1, 1], [2, 2, 2]], [[0, 1, 2], [0, 1, 2], [0, 1, 2]]])

计算规则网格上的高维函数时,这会非常有用。

从磁盘读取数组

这大概是大数组创建的最常见情况。当然,细节取决于磁盘上的数据格式,所以这一节只能给出如何处理各种格式的一般建议。

标准二进制格式

各个领域都有数组数据的标准格式。以下列出了用于读取和返回NumPy数组的已知Python库(也有其它的库可以读取数组并转换为NumPy数组,所以也请看一下最后一节)

HDF5: PyTables
FITS: PyFITS

一些格式不能直接读取,但是不难将其转换为类似PIL库(能够读写许多图像格式,例如jpg、png以及其它)所支持的格式。

普通的ASCII格式

逗号分隔值文件(CSV)被广泛使用(可以被类似Excel的一些程序导入导出)。有一些在python中读取这些文件的方法,例如Python和pylab(Matplotlib的一部分)中的函数。

更通用的ASCII文件可以使用SciPy的IO包来读取。

自定义二进制格式

有多种方法可以使用。如果文件有一个相对简单的格式,那么你可以写一个简单的I/O库并使用numpy fromfile()tofile()方法直接读写NumPy数组(注意字节顺序!)。如果有一个不错的C/C++库可以用于读取数据,则可以用各种技巧把它封装一下,虽然这可能要耗费一些工作量,也需要更多高级的知识来和C/C++交互。

特殊库的使用

有一些库可以用于生成特殊用途的数组,这样的库不可能全部列举出来。最常见的用法是使用许多数组生成函数来产生带有随机值的数组,以及使用一些生成特殊矩阵(如对角线)的功能函数。

相关文章

  • Numpy 中文用户指南 3.2 创建数组

    原文:Array creation 译者:飞龙 ‍ 另见 数组创建例程 导言 数组创建的一般机制有五种: 从其它P...

  • NumPy学习资料

    Numpy 中文资料 NumPy 中文文档 NumPy 中文用户指南 NumPy 中文参考手册

  • numpy学习笔记

    整理:杨柳依参考资料:《Numpy学习指南(第2版)》 1. numpy 数组 1.1 创建数组 以下省略fro...

  • NumPy

    Numpy简单创建数组 Numpy查看数组属性 数组元素个数 数组形状 数组维度 数组元素类型 快速创建N维数组的...

  • python的学习笔记9

    十一、数组的创建 1、通过列表创建数组 2、numpy中定义的原生数组创建函数 (1)numpy.zeros(sh...

  • python(numpy)的使用

    (一).创建数组 import numpy as np(导入numpy模块) 1.创建基本数组 (1).arr =...

  • NumPy 常用操作备忘

    0.导入 numpy 1.创建 numpy 数组NumPy 数组 (np.array) 可以生成 N 维数组,即可...

  • Numpy 常用函数

    numpy 数据类型 numpy 数组创建函数 numpy.empty(shape,): 创建指定类型, 指定形状...

  • 机器学习利器之Numpy

    Numpy 多维数组 Numpy 创建N维数组 查看数组属性 shape操作 数组索引和迭代 拼接、分割 基础运算...

  • Numpy&Pandas&Matplotlib速查手册

    Numpy Pandas Matplotlib Numpy_1 数组的创建和访问 由list产生数组 array(...

网友评论

    本文标题:Numpy 中文用户指南 3.2 创建数组

    本文链接:https://www.haomeiwen.com/subject/unzrlttx.html