美文网首页
2019-01-27[Stay Sharp] Covarianc

2019-01-27[Stay Sharp] Covarianc

作者: 三千雨点 | 来源:发表于2019-01-27 20:55 被阅读5次

Covariance is a measure of the joint variability of two random variable variables.

\operatorname { cov } ( X , Y ) = \mathrm { E } [ ( X - \mathrm { E } [ X ] ) ( Y - \mathrm { E } [ Y ] ) ]
represents the covariance between two jointly distributed real-valued random variables X and Y

If the random variable pair (X, Y) can take on the values (x_i, y_i) for i = 1 , \dots , n with equal probabilities p _ { i } = 1 / n, then the covariance can be written as:

\operatorname { cov } ( X , Y ) = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } \left( x _ { i } - E ( X ) \right) \left( y _ { i } - E ( Y ) \right)
if probabilities are not equal, the covariance could be:

\operatorname { cov } ( X , Y ) = \sum _ { i = 1 } ^ { n } p _ { i } \cdot \left( x _ { i } - E ( X ) \right) \cdot \left( y _ { i } - E ( Y ) \right)

Ref

https://en.wikipedia.org/wiki/Covariance

相关文章

网友评论

      本文标题:2019-01-27[Stay Sharp] Covarianc

      本文链接:https://www.haomeiwen.com/subject/uumnjqtx.html