Satija Lab https://satijalab.org/seurat/v3.1/pbmc3k_tutorial.html
按照Seurat的说明走了一遍流程:
流程主要包括:
QC and data filtration, calculation of high-variance genes, dimensional reduction, graph-based clustering, and the identification of cluster markers.
首先,升级一下Seurat(3.02升级到3.13),不升级的话后边用umap分群的时会报错。install.packages('Seurat')
安装失败,最后是本地安装成功。
和之前的Seurat2.0的版本相比,Seurat3.0变化很大;可以参考https://satijalab.org/seurat/v3.0/sctransform_vignette.html
也可以参考刘小泽的简书比较:单细胞Seurat包升级,换汤不换药 - 简书 https://www.jianshu.com/p/ac4621f4688a
单细胞Seurat包升级之2,700 PBMCs分析(上) - 简书 https://www.jianshu.com/p/beca2faf94f7
单细胞Seurat包升级之2,700 PBMCs分析(下) - 简书 https://www.jianshu.com/p/b46b6b6d344f
Seurat的分析流程如下:
pbmc.counts <- Read10X(data.dir = "~/Downloads/pbmc3k/filtered_gene_bc_matrices/hg19/")
pbmc <- CreateSeuratObject(counts = pbmc.counts)
pbmc <- NormalizeData(object = pbmc)
pbmc <- FindVariableFeatures(object = pbmc)
pbmc <- ScaleData(object = pbmc)
pbmc <- RunPCA(object = pbmc)
pbmc <- FindNeighbors(object = pbmc)
pbmc <- FindClusters(object = pbmc)
pbmc <- RunTSNE(object = pbmc)
DimPlot(object = pbmc, reduction = "tsne")
网友评论