Kernel SVM-Python

作者: 灵妍 | 来源:发表于2018-03-14 14:42 被阅读13次

    英语学习:
    penalty parameter:惩罚参数
    这里有两个参数可以优化高斯核函数SVM分类结果,是penalty parameter和gamma参数。设置随机数是为了是随机数与之前的一致,得到相同的分类模型。
    代码:

    # Kernel SVM
    
    # Importing the libraries
    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    
    # Importing the dataset
    dataset = pd.read_csv('Social_Network_Ads.csv')
    X = dataset.iloc[:, [2, 3]].values
    y = dataset.iloc[:, 4].values
    
    # Splitting the dataset into the Training set and Test set
    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
    
    # Feature Scaling
    from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    X_train = sc.fit_transform(X_train)
    X_test = sc.transform(X_test)
    
    # Fitting classifier to the Training set
    from sklearn.svm import SVC
    classifier = SVC(kernel = 'rbf', random_state = 0)
    classifier.fit(X_train, y_train)
    
    # Predicting the Test set results
    y_pred = classifier.predict(X_test)
    
    # Making the Confusion Matrix
    from sklearn.metrics import confusion_matrix
    cm = confusion_matrix(y_test, y_pred)
    
    # Visualising the Training set results
    from matplotlib.colors import ListedColormap
    X_set, y_set = X_train, y_train
    X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                         np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
    plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
                 alpha = 0.75, cmap = ListedColormap(('red', 'green')))
    plt.xlim(X1.min(), X1.max())
    plt.ylim(X2.min(), X2.max())
    for i, j in enumerate(np.unique(y_set)):
        plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                    c = ListedColormap(('orange', 'blue'))(i), label = j)
    plt.title('Classifier (Training set)')
    plt.xlabel('Age')
    plt.ylabel('Estimated Salary')
    plt.legend()
    plt.show()
    
    # Visualising the Test set results
    from matplotlib.colors import ListedColormap
    X_set, y_set = X_test, y_test
    X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                         np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
    plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
                 alpha = 0.75, cmap = ListedColormap(('red', 'green')))
    plt.xlim(X1.min(), X1.max())
    plt.ylim(X2.min(), X2.max())
    for i, j in enumerate(np.unique(y_set)):
        plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                    c = ListedColormap(('orange', 'blue'))(i), label = j)
    plt.title('Classifier (Test set)')
    plt.xlabel('Age')
    plt.ylabel('Estimated Salary')
    plt.legend()
    plt.show()
    

    关键代码:
    from sklearn.svm import SVC
    classifier = SVC(kernel = 'rbf', random_state = 0)
    classifier.fit(X_train, y_train)
    我发现这个算法的画图速度更快,混淆矩阵可以看出对测试集的预测效果更好。
    运行结果:


    混淆矩阵.PNG 训练集.PNG 测试集.PNG

    相关文章

      网友评论

        本文标题:Kernel SVM-Python

        本文链接:https://www.haomeiwen.com/subject/vbsfqftx.html