线程安全的数据结构

作者: Frank_Kivi | 来源:发表于2017-09-21 08:57 被阅读88次

相信大家都了解或者至少听说过Vector和ArrayList的区别。
Vector是线程安全的,但是ArrayList的效率更高。道理很容易理解,效率和安全肯定只能关注一边。但是Vector是如何实现线程安全的呢?

/**
 * The {@code Vector} class implements a growable array of
 * objects. Like an array, it contains components that can be
 * accessed using an integer index. However, the size of a
 * {@code Vector} can grow or shrink as needed to accommodate
 * adding and removing items after the {@code Vector} has been created.
 *
 * <p>Each vector tries to optimize storage management by maintaining a
 * {@code capacity} and a {@code capacityIncrement}. The
 * {@code capacity} is always at least as large as the vector
 * size; it is usually larger because as components are added to the
 * vector, the vector's storage increases in chunks the size of
 * {@code capacityIncrement}. An application can increase the
 * capacity of a vector before inserting a large number of
 * components; this reduces the amount of incremental reallocation.
 *
 * <p><a name="fail-fast">
 * The iterators returned by this class's {@link #iterator() iterator} and
 * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em></a>:
 * if the vector is structurally modified at any time after the iterator is
 * created, in any way except through the iterator's own
 * {@link ListIterator#remove() remove} or
 * {@link ListIterator#add(Object) add} methods, the iterator will throw a
 * {@link ConcurrentModificationException}.  Thus, in the face of
 * concurrent modification, the iterator fails quickly and cleanly, rather
 * than risking arbitrary, non-deterministic behavior at an undetermined
 * time in the future.  The {@link Enumeration Enumerations} returned by
 * the {@link #elements() elements} method are <em>not</em> fail-fast.
 *
 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 * as it is, generally speaking, impossible to make any hard guarantees in the
 * presence of unsynchronized concurrent modification.  Fail-fast iterators
 * throw {@code ConcurrentModificationException} on a best-effort basis.
 * Therefore, it would be wrong to write a program that depended on this
 * exception for its correctness:  <i>the fail-fast behavior of iterators
 * should be used only to detect bugs.</i>
 *
 * <p>As of the Java 2 platform v1.2, this class was retrofitted to
 * implement the {@link List} interface, making it a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.  Unlike the new collection
 * implementations, {@code Vector} is synchronized.  If a thread-safe
 * implementation is not needed, it is recommended to use {@link
 * ArrayList} in place of {@code Vector}.
 */
public class Vector<E>
    extends AbstractList<E>
    implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
}

通过类注释我们就能清楚的看到,Vector是通过synchronized关键字来实现线程安全的,如果不需要线程安全,推荐我们使用ArrayList。
让我们来查看一下Vector的add和get方法。

/**
     * Inserts the specified element at the specified position in this Vector.
     * Shifts the element currently at that position (if any) and any
     * subsequent elements to the right (adds one to their indices).
     *
     * @param index index at which the specified element is to be inserted
     * @param element element to be inserted
     * @throws ArrayIndexOutOfBoundsException if the index is out of range
     *         ({@code index < 0 || index > size()})
     * @since 1.2
     */
    public void add(int index, E element) {
        insertElementAt(element, index);
    }
 /**
     * Inserts the specified object as a component in this vector at the
     * specified {@code index}. Each component in this vector with
     * an index greater or equal to the specified {@code index} is
     * shifted upward to have an index one greater than the value it had
     * previously.
     *
     * <p>The index must be a value greater than or equal to {@code 0}
     * and less than or equal to the current size of the vector. (If the
     * index is equal to the current size of the vector, the new element
     * is appended to the Vector.)
     *
     * <p>This method is identical in functionality to the
     * {@link #add(int, Object) add(int, E)}
     * method (which is part of the {@link List} interface).  Note that the
     * {@code add} method reverses the order of the parameters, to more closely
     * match array usage.
     *
     * @param      obj     the component to insert
     * @param      index   where to insert the new component
     * @throws ArrayIndexOutOfBoundsException if the index is out of range
     *         ({@code index < 0 || index > size()})
     */
    public synchronized void insertElementAt(E obj, int index) {
        modCount++;
        if (index > elementCount) {
            throw new ArrayIndexOutOfBoundsException(index
                                                     + " > " + elementCount);
        }
        ensureCapacityHelper(elementCount + 1);
        System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
        elementData[index] = obj;
        elementCount++;
    }
/**
     * Appends the specified element to the end of this Vector.
     *
     * @param e element to be appended to this Vector
     * @return {@code true} (as specified by {@link Collection#add})
     * @since 1.2
     */
    public synchronized boolean add(E e) {
        modCount++;
        ensureCapacityHelper(elementCount + 1);
        elementData[elementCount++] = e;
        return true;
    }
/**
     * Adds the specified component to the end of this vector,
     * increasing its size by one. The capacity of this vector is
     * increased if its size becomes greater than its capacity.
     *
     * <p>This method is identical in functionality to the
     * {@link #add(Object) add(E)}
     * method (which is part of the {@link List} interface).
     *
     * @param   obj   the component to be added
     */
    public synchronized void addElement(E obj) {
        modCount++;
        ensureCapacityHelper(elementCount + 1);
        elementData[elementCount++] = obj;
    }
 /**
     * Returns the element at the specified position in this Vector.
     *
     * @param index index of the element to return
     * @return object at the specified index
     * @throws ArrayIndexOutOfBoundsException if the index is out of range
     *            ({@code index < 0 || index >= size()})
     * @since 1.2
     */
    public synchronized E get(int index) {
        if (index >= elementCount)
            throw new ArrayIndexOutOfBoundsException(index);

        return elementData(index);
    }

我们可以看到被调用的方法都是有synchronized 来修饰的。
好了,接着让我们查看其它的线程安全类。最重要是后来推出的在java.util.concurrent包下的一些类,我们以ConcurrentHashMap为例。

/**
 * A hash table supporting full concurrency of retrievals and
 * high expected concurrency for updates. This class obeys the
 * same functional specification as {@link java.util.Hashtable}, and
 * includes versions of methods corresponding to each method of
 * {@code Hashtable}. However, even though all operations are
 * thread-safe, retrieval operations do <em>not</em> entail locking,
 * and there is <em>not</em> any support for locking the entire table
 * in a way that prevents all access.  This class is fully
 * interoperable with {@code Hashtable} in programs that rely on its
 * thread safety but not on its synchronization details.
 *
 * <p>Retrieval operations (including {@code get}) generally do not
 * block, so may overlap with update operations (including {@code put}
 * and {@code remove}). Retrievals reflect the results of the most
 * recently <em>completed</em> update operations holding upon their
 * onset. (More formally, an update operation for a given key bears a
 * <em>happens-before</em> relation with any (non-null) retrieval for
 * that key reporting the updated value.)  For aggregate operations
 * such as {@code putAll} and {@code clear}, concurrent retrievals may
 * reflect insertion or removal of only some entries.  Similarly,
 * Iterators, Spliterators and Enumerations return elements reflecting the
 * state of the hash table at some point at or since the creation of the
 * iterator/enumeration.  They do <em>not</em> throw {@link
 * java.util.ConcurrentModificationException ConcurrentModificationException}.
 * However, iterators are designed to be used by only one thread at a time.
 * Bear in mind that the results of aggregate status methods including
 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
 * useful only when a map is not undergoing concurrent updates in other threads.
 * Otherwise the results of these methods reflect transient states
 * that may be adequate for monitoring or estimation purposes, but not
 * for program control.
 *
 * <p>The table is dynamically expanded when there are too many
 * collisions (i.e., keys that have distinct hash codes but fall into
 * the same slot modulo the table size), with the expected average
 * effect of maintaining roughly two bins per mapping (corresponding
 * to a 0.75 load factor threshold for resizing). There may be much
 * variance around this average as mappings are added and removed, but
 * overall, this maintains a commonly accepted time/space tradeoff for
 * hash tables.  However, resizing this or any other kind of hash
 * table may be a relatively slow operation. When possible, it is a
 * good idea to provide a size estimate as an optional {@code
 * initialCapacity} constructor argument. An additional optional
 * {@code loadFactor} constructor argument provides a further means of
 * customizing initial table capacity by specifying the table density
 * to be used in calculating the amount of space to allocate for the
 * given number of elements.  Also, for compatibility with previous
 * versions of this class, constructors may optionally specify an
 * expected {@code concurrencyLevel} as an additional hint for
 * internal sizing.  Note that using many keys with exactly the same
 * {@code hashCode()} is a sure way to slow down performance of any
 * hash table. To ameliorate impact, when keys are {@link Comparable},
 * this class may use comparison order among keys to help break ties.
 *
 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
 * (using {@link #keySet(Object)} when only keys are of interest, and the
 * mapped values are (perhaps transiently) not used or all take the
 * same mapping value.
 *
 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
 * form of histogram or multiset) by using {@link
 * java.util.concurrent.atomic.LongAdder} values and initializing via
 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
 *
 * <p>This class and its views and iterators implement all of the
 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
 * interfaces.
 *
 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
 * does <em>not</em> allow {@code null} to be used as a key or value.
 *
 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
 * operations that, unlike most {@link Stream} methods, are designed
 * to be safely, and often sensibly, applied even with maps that are
 * being concurrently updated by other threads; for example, when
 * computing a snapshot summary of the values in a shared registry.
 * There are three kinds of operation, each with four forms, accepting
 * functions with Keys, Values, Entries, and (Key, Value) arguments
 * and/or return values. Because the elements of a ConcurrentHashMap
 * are not ordered in any particular way, and may be processed in
 * different orders in different parallel executions, the correctness
 * of supplied functions should not depend on any ordering, or on any
 * other objects or values that may transiently change while
 * computation is in progress; and except for forEach actions, should
 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
 * objects do not support method {@code setValue}.
 *
 * <ul>
 * <li> forEach: Perform a given action on each element.
 * A variant form applies a given transformation on each element
 * before performing the action.</li>
 *
 * <li> search: Return the first available non-null result of
 * applying a given function on each element; skipping further
 * search when a result is found.</li>
 *
 * <li> reduce: Accumulate each element.  The supplied reduction
 * function cannot rely on ordering (more formally, it should be
 * both associative and commutative).  There are five variants:
 *
 * <ul>
 *
 * <li> Plain reductions. (There is not a form of this method for
 * (key, value) function arguments since there is no corresponding
 * return type.)</li>
 *
 * <li> Mapped reductions that accumulate the results of a given
 * function applied to each element.</li>
 *
 * <li> Reductions to scalar doubles, longs, and ints, using a
 * given basis value.</li>
 *
 * </ul>
 * </li>
 * </ul>
 *
 * <p>These bulk operations accept a {@code parallelismThreshold}
 * argument. Methods proceed sequentially if the current map size is
 * estimated to be less than the given threshold. Using a value of
 * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
 * of {@code 1} results in maximal parallelism by partitioning into
 * enough subtasks to fully utilize the {@link
 * ForkJoinPool#commonPool()} that is used for all parallel
 * computations. Normally, you would initially choose one of these
 * extreme values, and then measure performance of using in-between
 * values that trade off overhead versus throughput.
 *
 * <p>The concurrency properties of bulk operations follow
 * from those of ConcurrentHashMap: Any non-null result returned
 * from {@code get(key)} and related access methods bears a
 * happens-before relation with the associated insertion or
 * update.  The result of any bulk operation reflects the
 * composition of these per-element relations (but is not
 * necessarily atomic with respect to the map as a whole unless it
 * is somehow known to be quiescent).  Conversely, because keys
 * and values in the map are never null, null serves as a reliable
 * atomic indicator of the current lack of any result.  To
 * maintain this property, null serves as an implicit basis for
 * all non-scalar reduction operations. For the double, long, and
 * int versions, the basis should be one that, when combined with
 * any other value, returns that other value (more formally, it
 * should be the identity element for the reduction). Most common
 * reductions have these properties; for example, computing a sum
 * with basis 0 or a minimum with basis MAX_VALUE.
 *
 * <p>Search and transformation functions provided as arguments
 * should similarly return null to indicate the lack of any result
 * (in which case it is not used). In the case of mapped
 * reductions, this also enables transformations to serve as
 * filters, returning null (or, in the case of primitive
 * specializations, the identity basis) if the element should not
 * be combined. You can create compound transformations and
 * filterings by composing them yourself under this "null means
 * there is nothing there now" rule before using them in search or
 * reduce operations.
 *
 * <p>Methods accepting and/or returning Entry arguments maintain
 * key-value associations. They may be useful for example when
 * finding the key for the greatest value. Note that "plain" Entry
 * arguments can be supplied using {@code new
 * AbstractMap.SimpleEntry(k,v)}.
 *
 * <p>Bulk operations may complete abruptly, throwing an
 * exception encountered in the application of a supplied
 * function. Bear in mind when handling such exceptions that other
 * concurrently executing functions could also have thrown
 * exceptions, or would have done so if the first exception had
 * not occurred.
 *
 * <p>Speedups for parallel compared to sequential forms are common
 * but not guaranteed.  Parallel operations involving brief functions
 * on small maps may execute more slowly than sequential forms if the
 * underlying work to parallelize the computation is more expensive
 * than the computation itself.  Similarly, parallelization may not
 * lead to much actual parallelism if all processors are busy
 * performing unrelated tasks.
 *
 * <p>All arguments to all task methods must be non-null.
 *
 * <p>This class is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @since 1.5
 * @author Doug Lea
 * @param <K> the type of keys maintained by this map
 * @param <V> the type of mapped values
 */
public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
    implements ConcurrentMap<K,V>, Serializable {
}

我们可以看到,类注释上说的很清楚,get方法不是阻塞式的,所以可能和put,remove方法重叠。Iterators, Spliterators 和Enumerations这些方法都最好同时只有一个线程访问。还有size(),isEmpty()和containsValue()都是好在别的线程没有更新的时候再去访问。

/**
     * Maps the specified key to the specified value in this table.
     * Neither the key nor the value can be null.
     *
     * <p>The value can be retrieved by calling the {@code get} method
     * with a key that is equal to the original key.
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with {@code key}, or
     *         {@code null} if there was no mapping for {@code key}
     * @throws NullPointerException if the specified key or value is null
     */
    public V put(K key, V value) {
        return putVal(key, value, false);
    }

    /** Implementation for put and putIfAbsent */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount);
        return null;
    }

putVal中加了锁。

/**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code key.equals(k)},
     * then this method returns {@code v}; otherwise it returns
     * {@code null}.  (There can be at most one such mapping.)
     *
     * @throws NullPointerException if the specified key is null
     */
    public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
        int h = spread(key.hashCode());
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (e = tabAt(tab, (n - 1) & h)) != null) {
            if ((eh = e.hash) == h) {
                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                    return e.val;
            }
            else if (eh < 0)
                return (p = e.find(h, key)) != null ? p.val : null;
            while ((e = e.next) != null) {
                if (e.hash == h &&
                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }
 /**
     * Tests if the specified object is a key in this table.
     *
     * @param  key possible key
     * @return {@code true} if and only if the specified object
     *         is a key in this table, as determined by the
     *         {@code equals} method; {@code false} otherwise
     * @throws NullPointerException if the specified key is null
     */
    public boolean containsKey(Object key) {
        return get(key) != null;
    }
/**
     * Returns {@code true} if this map maps one or more keys to the
     * specified value. Note: This method may require a full traversal
     * of the map, and is much slower than method {@code containsKey}.
     *
     * @param value value whose presence in this map is to be tested
     * @return {@code true} if this map maps one or more keys to the
     *         specified value
     * @throws NullPointerException if the specified value is null
     */
    public boolean containsValue(Object value) {
        if (value == null)
            throw new NullPointerException();
        Node<K,V>[] t;
        if ((t = table) != null) {
            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
            for (Node<K,V> p; (p = it.advance()) != null; ) {
                V v;
                if ((v = p.val) == value || (v != null && value.equals(v)))
                    return true;
            }
        }
        return false;
    }
 /**
     * {@inheritDoc}
     */
    public int size() {
        long n = sumCount();
        return ((n < 0L) ? 0 :
                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
                (int)n);
    }

    /**
     * {@inheritDoc}
     */
    public boolean isEmpty() {
        return sumCount() <= 0L; // ignore transient negative values
    }

其它的方法都没有加锁。但是ConcurrentHashMap不会抛出ConcurrentModificationException。
最后我们还有一种保证线程安全的方法,就是

List<Object> synchronizedList = Collections.synchronizedList(new ArrayList<>());

首先让我们来看下,它是如何保证线程安全的。

/**
     * Returns a synchronized (thread-safe) list backed by the specified
     * list.  In order to guarantee serial access, it is critical that
     * <strong>all</strong> access to the backing list is accomplished
     * through the returned list.<p>
     *
     * It is imperative that the user manually synchronize on the returned
     * list when iterating over it:
     * <pre>
     *  List list = Collections.synchronizedList(new ArrayList());
     *      ...
     *  synchronized (list) {
     *      Iterator i = list.iterator(); // Must be in synchronized block
     *      while (i.hasNext())
     *          foo(i.next());
     *  }
     * </pre>
     * Failure to follow this advice may result in non-deterministic behavior.
     *
     * <p>The returned list will be serializable if the specified list is
     * serializable.
     *
     * @param  <T> the class of the objects in the list
     * @param  list the list to be "wrapped" in a synchronized list.
     * @return a synchronized view of the specified list.
     */
    public static <T> List<T> synchronizedList(List<T> list) {
        return (list instanceof RandomAccess ?
                new SynchronizedRandomAccessList<>(list) :
                new SynchronizedList<>(list));
    }

首先我们得搞清楚,几个类的关系图。

这个是最重要的,我们的List有的实现了RandomAccess 接口,比如ArrayList,有的没有,比如LinkedList。但是通过这个图片我们能清晰地看到到,SynchronizedRandomAccessList是SynchronizedList的子类。
我们来查看一下构造方法。

    SynchronizedRandomAccessList(List<E> list) {
            super(list);
        }

        SynchronizedRandomAccessList(List<E> list, Object mutex) {
            super(list, mutex);
        }

SynchronizedRandomAccessList是直接调用super的,也就是SynchronizedList的构造。

      final List<E> list;
        SynchronizedList(List<E> list) {
            super(list);
            this.list = list;
        }
        SynchronizedList(List<E> list, Object mutex) {
            super(list, mutex);
            this.list = list;
        }

而在SynchronizedList中,将传入的List赋值给自己的成员变量list,然后又调用了super。

 final Collection<E> c;  // Backing Collection
        final Object mutex;     // Object on which to synchronize

        SynchronizedCollection(Collection<E> c) {
            this.c = Objects.requireNonNull(c);
            mutex = this;
        }

        SynchronizedCollection(Collection<E> c, Object mutex) {
            this.c = Objects.requireNonNull(c);
            this.mutex = Objects.requireNonNull(mutex);
        }

在SynchronizedCollection中有两个成员变量进行了赋值,分别是mutex和c。他们具体的作用是什么呢。
现在让我们回来看看他们是如何实现线程安全的,我们还以常用的方法为例。

public boolean equals(Object o) {
            if (this == o)
                return true;
            synchronized (mutex) {return list.equals(o);}
        }
        public int hashCode() {
            synchronized (mutex) {return list.hashCode();}
        }

        public E get(int index) {
            synchronized (mutex) {return list.get(index);}
        }
        public E set(int index, E element) {
            synchronized (mutex) {return list.set(index, element);}
        }
        public void add(int index, E element) {
            synchronized (mutex) {list.add(index, element);}
        }
        public E remove(int index) {
            synchronized (mutex) {return list.remove(index);}
        }

        public int indexOf(Object o) {
            synchronized (mutex) {return list.indexOf(o);}
        }
        public int lastIndexOf(Object o) {
            synchronized (mutex) {return list.lastIndexOf(o);}
        }

        public boolean addAll(int index, Collection<? extends E> c) {
            synchronized (mutex) {return list.addAll(index, c);}
        }

        public ListIterator<E> listIterator() {
            return list.listIterator(); // Must be manually synched by user
        }

        public ListIterator<E> listIterator(int index) {
            return list.listIterator(index); // Must be manually synched by user
        }

        public List<E> subList(int fromIndex, int toIndex) {
            synchronized (mutex) {
                return new SynchronizedList<>(list.subList(fromIndex, toIndex),
                                            mutex);
            }
        }

        @Override
        public void replaceAll(UnaryOperator<E> operator) {
            synchronized (mutex) {list.replaceAll(operator);}
        }
        @Override
        public void sort(Comparator<? super E> c) {
            synchronized (mutex) {list.sort(c);}
        }

非常简单,全部使用了mutex对象来加锁实现。实际操作的list也是我们传入的list。这个mutex如果我们传入就使用我们传入的,不传入就直接使用list。
Collections.synchronizedMap()
Collections.synchronizedSet()
原理完全相同,在这里就不再分析了。
针对这几种处理多线程的方法,个人推荐最后一种,但是也要注意在使用listIterator时,也是不支持多线程同时访问的。

相关文章

  • 面试经典 ConcurrentHashMap 源码你读过吗?

    HashMap 的线程安全性 HashMap 是线程不安全的。 为了使用线程安全的数据结构,多线程条件下,可使用 ...

  • CurrentHashMap为什么线程安全

    线程安全的数据结构都有哪些

  • 高性能编程

    ## 重点 1、线程安全概念 线程安全来自于竞争,核心思路避免共享数据结构、共享状态,使用线程local变量、使用...

  • JAVA题库(三)

    1.java常用的数据结构有哪些?哪些是线程安全的?是怎么保证线程安全的? 答: 什么时候需要使用线程安全的数据结...

  • 十二、线程安全的集合

    十二、线程安全的集合 除了使用锁来保护共享数据结构,也可以直接使用一些实现了线程安全的对象 常见的线程安全集合 线...

  • ArrayList 与 LinkedList 区别

    是否线程安全:都是不同步的,也就是不保证线程安全; 底层数据结构:ArrayList 底层使用的是 Object[...

  • HashMap

    HashMap线程不安全线程不安全具体是指:多个线程同时访问,并且至少有一个线程修改了HashMap的数据结构,则...

  • 环形队列RingBuffer--Java实现

    在多线程并发中,程序为了保证线程的安全,通常需要加锁。那有没有一种数据结构能够实现不加锁的线程安全呢?有,就是大名...

  • 带你快速了解Java锁中的公平锁与非公平锁

    前言 Java语言中有许多原生线程安全的数据结构,比如ArrayBlockingQueue、CopyOnWrite...

  • Python 源码分析:queue 队列模块 !

    起步 queue 模块提供适用于多线程编程的先进先出(FIFO)数据结构。因为它是线程安全的,所以多个线程很轻松地...

网友评论

    本文标题:线程安全的数据结构

    本文链接:https://www.haomeiwen.com/subject/vcensxtx.html