我们知道,程序运行中会有一些垃圾数据不再使用,需要及时释放出去,如果我们没有及时释放,这就是内存泄露。JavaScript 是一门具有自动垃圾收集机制的编程语言,由执行环境负责在代码执行时管理内存。JS 中的垃圾数据都是由垃圾回收(Garbage Collection,缩写为 GC)器自动回收的,不需要手动释放。JS 引擎中有一个后台进程称为垃圾回收器,它监视所有对象,观察对象是否可被访问,然后按照固定的时间间隔周期性的删除掉那些不可访问的对象即可。
常见的垃圾回收方法:1)引用计数方法;2)标记清除方法。
1)引用计数
引用计数就是给一个占用物理空间的对象附加一个引用计数器,当有其它对象引用这个对象时,这个对象的引用计数加一,反之解除时就减一,当该对象引用计数为 0 时就会被回收。如果出现循环引用,则一直不会被回收,还是会造成内存泄漏。
我们大部分人时刻都在写着循环引用的代码,看下面这个例子:
我们为一个元素的点击事件绑定了一个匿名函数,我们通过event参数是可以拿到相应元素el的信息的。el有一个属性onclick引用了一个函数(其实也是个对象),函数里面的参数又引用了el,这样el的引用次数一直是2,即使当前这个页面关闭了,也无法进行垃圾回收。
解决办法:及时销毁绑定的事件、使用弱引用 weakMap、weakSet。
2)标记清除
V8 中主垃圾回收器就采用标记清除法进行垃圾回收。主要流程如下:
标记:遍历调用栈,看老生代区域堆中的对象是否被引用,被引用的对象标记为活动对象,没有被引用的对象(待清理)标记为垃圾数据。
清除:将所有垃圾数据清理掉。
垃圾回收算法
垃圾回收的实现简单分为以下三个步骤:
1)可访问性
从 GC Roots 对象出发,遍历 GC Root 中的所有对象:
a、可访问对象:通过 GC Root 遍历到的对象,我们就认为该对象是可访问的(reachable),那么必须保证这些对象应该在内存中保留。
b、不可访问对象:通过 GC Roots 没有遍历到的对象,则是不可访问的(unreachable),并会对其做上标记,那么这些不可访问的对象就可能被回收。
GC Root 有很多,通常包括了以下几种 (但是不止于这几种):全局的 window 对象(位于每个 iframe 中);文档 DOM 树,可以通过遍历文档到达的所有原生 DOM 节点组成;存放栈上变量。
2)回收不可访问对象所占据的内存
在所有的标记完成之后,统一清理内存中所有被标记为可回收的对象。
3)内存整理
频繁回收对象后,内存中就会存在大量不连续空间,称为内存碎片。当出现了大量的内存碎片之后,如果需要分配较大的连续内存时,就会出现内存不足的情况,所以最后一步需要整理这些内存碎片。
在我们的实际开发过程中,如果我们想要让垃圾回收器回收某一对象,就将对象的引用直接设置为 null。但如果一个对象被多次引用时,例如作为另一对象的键、值或子元素时,将该对象引用设置为 null 时,该对象是不会被回收的,依然存在。
如果想让 a 置为 null 时,该对象被回收,该怎么做?ES6 考虑到了这一点,推出了WeakMap 。它对于值的引用都是不计入垃圾回收机制的,所以名字里面才会有一个"Weak",表示这是弱引用(对对象的弱引用是指当该对象应该被GC回收时不会阻止GC的回收行为)。
map weakmap从上面的例子我们可以看出,只要外部的引用消失,WeakMap 内部的引用,就会自动被垃圾回收清除。
WeakMap 对象是一组键值对的集合,其中的键是弱引用对象,而值可以是任意。
注意,WeakMap 弱引用的只是键名,而不是键值。键值依然是正常引用。
WeakMap 中,每个键对自己所引用对象的引用都是弱引用,在没有其他引用和该键引用同一对象,这个对象将会被垃圾回收(相应的key则变成无效的),所以,WeakMap 的 key 是不可枚举的。
除了 WeakMap 还有 WeakSet 都是弱引用,可以被垃圾回收机制回收,可以用来保存DOM节点,不容易造成内存泄漏。另外还有 ES12 的 WeakRef。
WeakMap vs Map(详情见 https://www.jianshu.com/p/114ec4a13e4e)
JavaScript 引擎 V8 - 垃圾回收
目前 V8 采用了两个垃圾回收器,主垃圾回收器和副垃圾回收器。在 V8 中,会把堆分为新生代(新生代通常只支持 1~8M 的容量)和老生代(容量大)两个区域,新生代中存放的是生存时间短的对象,老生代中存放生存时间久的对象。分别对新老生代采用不同的垃圾回收算法来提高效率,对象最开始都会先被分配到新生代(如果新生代内存空间不够,直接分配到老生代),新生代中的对象会在满足某些条件后,被移动到老生代,这个过程叫晋升(当一个对象经过多次复制仍然存活时,它就会被认为是生命周期较长的对象。这种较长生命周期的对象随后会被移动到老生代中,采用新的算法进行管理)。
对象晋升的条件主要有两个:
a、对象从对象区复制到空闲区时,会检查它的内存地址来判断这个对象是否已经经历过一次Scavenge回收。如果已经经历过了,会将该对象从新生空间移动到老生代空间中,如果没有,则复制到空闲区。总结来说,如果一个对象是第二次经历从对象区复制到空闲区,那么这个对象会被移动到老生代中。
b、当要从对象区复制一个对象到空闲区时,如果空闲区已经使用了超过25%,则这个对象直接晋升到老生区中。设置25%这个阈值的原因是当这次Scavenge回收完成后,这个空闲区会变为对象区,接下来的内存分配将在这个空间中进行。如果占比过高,会影响后续的内存分配。
1)副垃圾回收器
负责新生代的垃圾回收,大多数小的对象都会被分配到新生代,垃圾回收比较频繁。新生代中的垃圾数据用 Scavenge 算法来处理。Cheney算法将内存一分为二,叫做semispace,分为两个区域:对象区域 ,空闲区域。
我垃圾回收过程:新加入的对象都会存放到对象区域,当对象区域快被写满时,就需要执行一次垃圾清理操作。
a、垃圾标记和清理:首先要对对象区域中的垃圾做标记;标记完成之后,就进入垃圾清理阶段。副垃圾回收器会把这些我们仍然在用的对象复制到空闲区域中,同时它还会把这些对象有序地排列起来,在复制过程,相当于完成了内存整理操作,复制后空闲区域就没有内存碎片了。
b、角色翻转:完成复制后,进行角色翻转。把原来的对象区变成空闲区,把原来的空闲区变成对象区。是为了让活跃对象始终保持在一块semispace中,另一块semispace始终保持空闲的状态。
2)主垃圾回收器
负责老生代中的垃圾回收,大多数占用空间大、存活时间长的对象都会被分配到老生代里。老生代中的垃圾数据用标记 - 清除算法进行垃圾回收,因为老生代中的对象通常比较大,复制大对象非常耗时,会导致回收执行效率不高,所以采用标记清除法。
垃圾回收过程:
a、标记:标记阶段就是从一组根元素开始,递归遍历这组根元素,在这个遍历过程中,能到达的元素称为活动对象,没有到达的元素就可以判断为垃圾数据。
b、清除:它和副垃圾回收器的垃圾清除过程完全不同,主垃圾回收器会直接将标记为垃圾的数据清理掉。
c、整理:清除后会产生大量不连续的内存碎片,过多的碎片会导致大对象无法分配到足够的连续内存,于是需要引进另一种算法:标记 - 整理,整理这些内存碎片。
由于 JavaScript 是运行在主线程之上的,在垃圾回收时会阻塞 JavaScript 脚本的执行,会造成页面卡顿等问题。
为了解决上述问题,V8 团队推出了并行、并发和增量等垃圾回收技术。
a、将一个完整的垃圾回收的任务拆分成多个小的任务,解决单个垃圾回收时间长的问题。
b、将标记对象、移动对象等任务转移到后台线程进行,减少主阻塞线程的时间。
网友评论