美文网首页NLP&NLU
使用 bi-LSTM 对文本进行特征提取

使用 bi-LSTM 对文本进行特征提取

作者: 蓝天白云bubble | 来源:发表于2020-01-27 16:28 被阅读0次

该部分内容通过代码注释的形式说明。

一、TextCNN 核心部分代码如下,这里主要关注 LSTM 类的内容。

import torch.nn as nn
import torch

class Linear(nn.Module):
    def __init__(self, in_features, out_features):
        super(Linear, self).__init__()

        self.linear = nn.Linear(in_features=in_features,
                                out_features=out_features)
        self.init_params()

    def init_params(self):
        nn.init.kaiming_normal_(self.linear.weight)
        nn.init.constant_(self.linear.bias, 0)

    def forward(self, x):
        x = self.linear(x)
        return x


class LSTM(nn.Module):

    def __init__(self, input_size, hidden_size, num_layers, bidirectional, dropout):
        """
        Args:
            input_size: x 的特征维度
            hidden_size: 隐层的特征维度
            num_layers: LSTM 层数
        """
        super(LSTM, self).__init__()

        self.rnn = nn.LSTM(
            input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bidirectional=bidirectional, dropout=dropout
        )

        self.init_params()

    def init_params(self):
        for i in range(self.rnn.num_layers):
            nn.init.orthogonal_(getattr(self.rnn, 'weight_hh_l{}'.format(i)))
            nn.init.kaiming_normal_(getattr(self.rnn, 'weight_ih_l{}'.format(i)))
            nn.init.constant_(getattr(self.rnn, 'bias_hh_l{}'.format(i)), val=0)
            nn.init.constant_(getattr(self.rnn, 'bias_ih_l{}'.format(i)), val=0)
            getattr(self.rnn, 'bias_hh_l{}'.format(i)).chunk(4)[1].fill_(1)

            if self.rnn.bidirectional:
                nn.init.orthogonal_(
                    getattr(self.rnn, 'weight_hh_l{}_reverse'.format(i)))
                nn.init.kaiming_normal_(
                    getattr(self.rnn, 'weight_ih_l{}_reverse'.format(i)))
                nn.init.constant_(
                    getattr(self.rnn, 'bias_hh_l{}_reverse'.format(i)), val=0)
                nn.init.constant_(
                    getattr(self.rnn, 'bias_ih_l{}_reverse'.format(i)), val=0)
                getattr(self.rnn, 'bias_hh_l{}_reverse'.format(i)).chunk(4)[1].fill_(1)

    def forward(self, x, lengths):
        ''' 
        关于 pack_padded_sequence 和 pad_packed_sequence 函数的用法见本文最后
        '''
        # x: [seq_len, batch_size, input_size]
        # lengths: [batch_size]
        packed_x = nn.utils.rnn.pack_padded_sequence(x, lengths)

        # packed_x, packed_output: PackedSequence 对象
        # hidden: [num_layers * bidirectional, batch_size, hidden_size]
        # cell: [num_layers * bidirectional, batch_size, hidden_size]
        # Note: hidden 作为每个时间步的输出,cell 作为细胞状态。在相邻的时间步之间,cell 的值一般变化不大,但
        #              hidden 的差别一般会变化很大。
        packed_output, (hidden, cell) = self.rnn(packed_x)

        # output: [max_seq_len, batch_size, hidden_size * 2]
        # output_lengths: [batch_size]
        # 这里的 output 作为接下来全连接层的输入
        output, output_lengths = nn.utils.rnn.pad_packed_sequence(packed_output)

        return hidden, output


class TextRNN(nn.Module):

    def __init__(self, embedding_dim, output_dim, hidden_size, num_layers, bidirectional, dropout,
                 pretrained_embeddings):
        super(TextRNN, self).__init__()

        self.embedding = nn.Embedding.from_pretrained(
            pretrained_embeddings, freeze=False)
        self.rnn = LSTM(embedding_dim, hidden_size, num_layers, bidirectional, dropout)

        self.fc = Linear(hidden_size * 2, output_dim)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        text, text_lengths = x
        # text: [sent len, batch size]
        embedded = self.dropout(self.embedding(text))
        # embedded: [sent len, batch size, emb dim]

        hidden, outputs = self.rnn(embedded, text_lengths)

        hidden = self.dropout(
            torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1))  # 连接最后一层的双向输出

        return self.fc(hidden)

二、完整 demo

import torch.nn as nn
import torch

from torchtext import data
from torchtext import vocab
from tqdm import tqdm


class Linear(nn.Module):
    def __init__(self, in_features, out_features):
        super(Linear, self).__init__()

        self.linear = nn.Linear(in_features=in_features,
                                out_features=out_features)
        self.init_params()

    def init_params(self):
        nn.init.kaiming_normal_(self.linear.weight)
        nn.init.constant_(self.linear.bias, 0)

    def forward(self, x):
        x = self.linear(x)
        return x


class LSTM(nn.Module):

    def __init__(self, input_size, hidden_size, num_layers, bidirectional, dropout):
        """
        Args:
            input_size: x 的特征维度
            hidden_size: 隐层的特征维度
            num_layers: LSTM 层数
        """
        super(LSTM, self).__init__()

        self.rnn = nn.LSTM(
            input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bidirectional=bidirectional, dropout=dropout
        )

        self.init_params()

    def init_params(self):
        for i in range(self.rnn.num_layers):
            nn.init.orthogonal_(getattr(self.rnn, 'weight_hh_l{}'.format(i)))
            nn.init.kaiming_normal_(getattr(self.rnn, 'weight_ih_l{}'.format(i)))
            nn.init.constant_(getattr(self.rnn, 'bias_hh_l{}'.format(i)), val=0)
            nn.init.constant_(getattr(self.rnn, 'bias_ih_l{}'.format(i)), val=0)
            getattr(self.rnn, 'bias_hh_l{}'.format(i)).chunk(4)[1].fill_(1)

            if self.rnn.bidirectional:
                nn.init.orthogonal_(
                    getattr(self.rnn, 'weight_hh_l{}_reverse'.format(i)))
                nn.init.kaiming_normal_(
                    getattr(self.rnn, 'weight_ih_l{}_reverse'.format(i)))
                nn.init.constant_(
                    getattr(self.rnn, 'bias_hh_l{}_reverse'.format(i)), val=0)
                nn.init.constant_(
                    getattr(self.rnn, 'bias_ih_l{}_reverse'.format(i)), val=0)
                getattr(self.rnn, 'bias_hh_l{}_reverse'.format(i)).chunk(4)[1].fill_(1)

    def forward(self, x, lengths):
        # x: [seq_len, batch_size, input_size]
        # lengths: [batch_size]
        packed_x = nn.utils.rnn.pack_padded_sequence(x, lengths)

        # packed_x, packed_output: PackedSequence 对象
        # hidden: [num_layers * bidirectional, batch_size, hidden_size]
        # cell: [num_layers * bidirectional, batch_size, hidden_size]
        # Note: hidden 作为每个时间步的输出,cell 作为细胞状态。在相邻的时间步之间,cell 的值一般变化不大,但
        #              hidden 的差别一般会变化很大。
        packed_output, (hidden, cell) = self.rnn(packed_x)

        # output: [max_seq_len, batch_size, hidden_size * 2]
        # output_lengths: [batch_size]
        # 这里的 output 作为接下来全连接层的输入
        output, output_lengths = nn.utils.rnn.pad_packed_sequence(packed_output)

        return hidden, output


class TextRNN(nn.Module):

    def __init__(self, embedding_dim, output_dim, hidden_size, num_layers, bidirectional, dropout,
                 pretrained_embeddings):
        super(TextRNN, self).__init__()

        self.embedding = nn.Embedding.from_pretrained(
            pretrained_embeddings, freeze=False)
        self.rnn = LSTM(embedding_dim, hidden_size, num_layers, bidirectional, dropout)

        self.fc = Linear(hidden_size * 2, output_dim)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        text, text_lengths = x
        # text: [sent len, batch size]
        embedded = self.dropout(self.embedding(text))
        # embedded: [sent len, batch size, emb dim]

        hidden, outputs = self.rnn(embedded, text_lengths)

        hidden = self.dropout(
            torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1))  # 连接最后一层的双向输出

        return self.fc(hidden)


if __name__ == '__main__':
    embedding_file = '/home/jason/Desktop/data/embeddings/glove/glove.840B.300d.txt'
    path = '/home/jason/Desktop/data/SST-2/'

    cache_dir = '.cache/'
    batch_size = 6
    vectors = vocab.Vectors(embedding_file, cache_dir)

    text_field = data.Field(tokenize='spacy',
                            lower=True,
                            include_lengths=True,
                            fix_length=5)
    label_field = data.LabelField(dtype=torch.long)

    train, dev, test = data.TabularDataset.splits(path=path,
                                                  train='train.tsv',
                                                  validation='dev.tsv',
                                                  test='test.tsv',
                                                  format='tsv',
                                                  skip_header=True,
                                                  fields=[('text', text_field), ('label', label_field)])

    text_field.build_vocab(train,
                           dev,
                           test,
                           max_size=25000,
                           vectors=vectors,
                           unk_init=torch.Tensor.normal_)
    label_field.build_vocab(train, dev, test)

    pretrained_embeddings = text_field.vocab.vectors
    labels = label_field.vocab.vectors

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    train_iter, dev_iter, test_iter = data.BucketIterator.splits((train, dev, test),
                                                                 batch_sizes=(batch_size, len(dev), len(test)),
                                                                 sort_key=lambda x: len(x.text),
                                                                 sort_within_batch=True,
                                                                 repeat=False,
                                                                 shuffle=True,
                                                                 device=device
                                                                )

    model = TextRNN(300, 2, 200, 2, True, 0.4, pretrained_embeddings)

    for step, batch in enumerate(tqdm(train_iter, desc="Iteration")):
        logits = model(batch.text)
        break

三、关于 pack_padded_sequence 和 pad_packed_sequence 函数的简单示例

train_x = [torch.tensor([1, 1, 1, 1, 1, 1, 1]),
           torch.tensor([3, 3, 3, 3, 3]),
           torch.tensor([6, 6])]
x = nn.utils.rnn.pad_sequence(train_x, batch_first=True)
print('>1: ', x)
pack_x = nn.utils.rnn.pack_padded_sequence(x, [7, 5, 2], batch_first=True)
print('>2: ', pack_x)
reverse_x = nn.utils.rnn.pad_packed_sequence(pack_x)
print('>3: ', reverse_x)

执行结果如下:

>1:  tensor([[1, 1, 1, 1, 1, 1, 1],
        [3, 3, 3, 3, 3, 0, 0],
        [6, 6, 0, 0, 0, 0, 0]])
>2:  PackedSequence(data=tensor([1, 3, 6, 1, 3, 6, 1, 3, 1, 3, 1, 3, 1, 1]), batch_sizes=tensor([3, 3, 2, 2, 2, 1, 1]), sorted_indices=None, unsorted_indices=None)
>3:  (tensor([[1, 3, 6],
        [1, 3, 6],
        [1, 3, 0],
        [1, 3, 0],
        [1, 3, 0],
        [1, 0, 0],
        [1, 0, 0]]), tensor([7, 5, 2]))

相关文章

  • 使用 bi-LSTM 对文本进行特征提取

    该部分内容通过代码注释的形式说明。 一、TextCNN 核心部分代码如下,这里主要关注 LSTM 类的内容。 二、...

  • 文本挖掘

    文本挖掘,指从大量文本集合中发现隐含的模式 。网络文本挖掘是对网上那个大量文本进行表示、特征提取、网络总结、分类、...

  • 文本特征提取

    在对文本数据进行处理时,很大一部分精力都用在数据集的特征提取上,因此记录一下常用的文本特征提取方法。 文本特征提取...

  • 使用 CNN 对文本进行特征提取

    该部分内容通过代码注释的形式说明。 一、TextCNN 核心部分代码 至此,本文要说明的内容结束了。 二、完整 d...

  • 文本特征提取(2)

    继上期文本特征提取一文以及文本的可读性探究后,继续推出文本特征提取二,从词集型、词袋型提取文本特征。 文本特征提取...

  • 文本特征提取

    文本特征提取 文本特征提取: 将文本数据转化成特征向量的过程 比较常用的文本特征表示法为词袋法 词袋法: 不考虑词...

  • Spark机器学习实战 (十一) - 文本情感分类项目实战

    0 相关源码 将结合前述知识进行综合实战,以达到所学即所用。文本情感分类这个项目会将分类算法、文本特征提取算法等...

  • 2. 文本向量化

    在scikit-learn中,对文本数据进行特征提取,其实就是将文本数据转换为计算机能够处理的数字形式。Sciki...

  • 《基于卷积神经网络的个性化推荐算法研究》前期准备2

    1.2卷积神经网络的介绍 卷积神经网络主要是对输入的数据进行特征提取和分类,输入的数据可以是图片、文本,音频等,具...

  • Kaldi命令词识别(续)

    task4 : 特征提取(FMCC) 完成了语言模型的构建,下面开始生成声学模型部分,首先对语音文件进行特征提取,...

网友评论

    本文标题:使用 bi-LSTM 对文本进行特征提取

    本文链接:https://www.haomeiwen.com/subject/vldethtx.html