美文网首页
2019-03-08

2019-03-08

作者: 这个人懒死了什么都没有写 | 来源:发表于2019-03-08 10:58 被阅读0次

1 / (ch x)^n 形式的不定积分

今日在计算习题时遇到了 \int_{}^{}dx/ch^3xdx 的积分, 由于一个寒假没有碰过数学书的缘故, 算了将近一个小时也不见结果, 上网百度也只有常见的双曲函数积分,实在无奈。 又花了将近半个小时,终于推出了结果(还是间接推出来的,唉),接着又用了将近两个小时推出一般公式。现在附上推导过程和最后的递推公式。

部分地方的表达可能不太规范(没有写积分常数云云...)。

如果你也因为相同的原因上网搜索相应公式,而看到这点笔记,希望有所帮助,如有错误,希望在评论中指出。不想听我废话的,直接跳到这里[1]

首先看一道物理题:在宇宙中, 有两个各为 1kg 的小球,相距 1m,若周围没有任何物体,两小球在引力的作用下相互靠近,问两小球接触需要花多久?

很明显,由题目的描述,可以列出几个方程。两个球的运动过程是对称的,只考虑一个就够了。设一个球运动的路程为 s(t), 初始距离为 len = 1(m), 则两者距离为:

l = len - 2 \times s

由万有引力定律, 两者之间的引力大小为:

F = \frac{G\times m^{2}}{l^{2}}

加速度大小为路程对时间的二阶导数,则:

a = \frac{d^{2}s}{dt^{2}}

再由牛顿第二定律,则有:

\frac{F}{m} = a , \frac{G \times m}{(len - 2 \times s)^{2}} = \frac{d^{2}s}{dt^{2}}

得到了一个微分方程,首先让它变成一阶的,得到:

\sqrt {\frac{len - 2 \times s}{s}}ds = \sqrt{G \times m}dt

解这个方程的左边时,我手贱地使用了换元,先令 t = \sqrt {\frac{len - 2 \times s}{s}}, 得到 s = \frac {1}{t^{2} + 2} (len 等于 1 ,下面都直接写成了数字), 左边变为:\frac {-2t^{2}}{(t^{2}+2)^2}dt 。再双曲变换一下,令 t = \sqrt 2sh\theta, 得到 \sqrt 2 (\frac{1}{ch^{3} \theta} - \frac{1}{ch\theta})d\theta,\int_{}{} \frac{1}{ch\theta}d\theta 很简单, 但是前一个我实在无能为力...... 后来突然想起来还有分部积分大法,一下子就积分积出了左式。直接得到:

K(s)=\sqrt {\frac{1 - 2s}{s}}ds = \sqrt {s - 2\times s^{2}} +\frac{1}{ 2\sqrt 2}arcsin(4s - 1)

这样一来,这个问题也就解决了:

K(\frac {1}{2}) - K(0) = \int_{0}^{t} \sqrt{G\times m}dt =\sqrt{G \times m}\times t,得到 t = \frac {\pi}{2 \sqrt{2Gm}}, 终于做出来了(大约需要 26.7 个小时...)。

既然公式都推导出来了,现在就可以间接得到 \int_{}{} \frac {1}{ch^{3}\theta}d\theta 了。由 s = \frac {1}{t^{2} + 2}t = \sqrt 2sh\theta ,可以得到 s = \frac {1}{2ch^{2}\theta} , 那么:

\sqrt {s - 2\times s^{2}} +\frac{1}{ 2\sqrt 2}arcsin(4s - 1) = \frac{sh\theta}{\sqrt2ch^{2}\theta}+ \frac{1}{2\sqrt2}arcsin(\frac{2}{ch^{2}\theta}-1)

\int_{}{}\sqrt 2 (\frac{1}{ch^{3} \theta} - \frac{1}{ch\theta})d\theta = -\sqrt2arcsin(th\theta)+\sqrt2 \int_{}{}\frac{1}{ch^{3}\theta}d\theta

由这两个式子,我终于得到了那个梦寐以求的式子:

\int_{}{} \frac{1}{ch^{3}\theta}d\theta = \frac {sh \theta}{2ch^{2}\theta}+arcsin(th\theta)+\frac{1}{4}arcsin(\frac{2}{ch^{2}\theta}-1)

\frac{1}{4}arcsin(\frac{2}{ch^{2}\theta}-1) 求导,就会得到 - \frac {1}{2ch\theta} ,也就是 - \frac{arcsin(th\theta)}{2} 的导数,这样一来,上式可以简化为:

\int_{}{} \frac{1}{ch^{3}\theta}d\theta = \frac {sh \theta}{2ch^{2}\theta}+\frac{arcsin(th\theta)}{2}

到了这里,题目已经完成,相应的积分公式也推出来了,但我又对一般形式十分感兴趣,又接着求了 \int_{}{}\frac{1}{ch^{4}\theta}d\theta ,把它们都列在一起:

\int_{}{} \frac{1}{ch\theta}d\theta = arcsin(th\theta)

\int_{}{}\frac{1}{ch^{2}\theta}d\theta = \frac{sh\theta}{ch\theta}

\int_{}{}\frac{1}{ch^{3}\theta}d\theta = \frac {sh \theta}{2ch^{2}\theta}+\frac{arcsin(th\theta)}{2}

\int_{}{} \frac{1}{ch^{4}\theta}d\theta = \frac{sh\theta}{3ch^{3}\theta}+\frac{2}{3}\frac{sh\theta}{ch\theta}

推到这里,就可以看到一点规律了,\int_{}{}\frac{1}{ch^{3}\theta}d\theta 很明显和 \int_{}{}\frac{1}{ch\theta}d\theta 有关,\int_{}{}\frac{1}{ch^{4}\theta}d\theta\int_{}{}\frac{1}{ch^{2}\theta}d\theta 也有关。每一项的系数也与 ch\theta 的次数有很直接的关系,那就猜想:

\int_{}{}\frac{1}{ch^{n}\theta}d\theta = \frac{1}{n-1}(\frac{sh\theta}{ch^{n-1}\theta}+(n-2)\int_{}{}\frac{1}{ch^{n-2}\theta}d\theta) n\geq 3

证明很容易,直接微分就是了。

这个积分公式与 \int_{}{}sin^{n}xdx 有着相似之处,两者会不会有什么联系呢?


  1. \int_{}{}\frac{1}{ch^{n}\theta}d\theta = \frac{1}{n-1}(\frac{sh\theta}{ch^{n-1}\theta}+(n-2)\int_{}{}\frac{1}{ch^{n-2}\theta}d\theta) n\geq 3

相关文章

网友评论

      本文标题:2019-03-08

      本文链接:https://www.haomeiwen.com/subject/vlglpqtx.html