美文网首页
图片内容定点识别

图片内容定点识别

作者: 小帅明3号 | 来源:发表于2021-01-18 22:07 被阅读0次

安装模块:baidu-aip和pillow

   from aip import AipOcr
import os,shutil,time
from PIL import Image


print("\n\n   ~~~~~~~      ~~~~~~~~\n  ~~~~~~~~~~  ~~~~~~~~~~~\n   ~~~~~~冯冯小甜心~~~~~\n    ~~~~~          ~~~~\n      ~~~~~~~~~~~~~~~\n         ~~~~~~~~~\n            ~~~\n")

#初始化全局变量
exit_='Y'
while True:
    pwd = input('请输入工具码(输入exit退出):')
    if pwd=='exit':
        break
    if pwd!='19961220':
        print("密码错误,请重新输入!")
        continue
    # 设置登录密码
    if pwd == '19961220':
        print('登录成功!\n')
        while True:
            file_ph=input('请输入需处理图片的路径:')
            #主功能区
            try:
                # 这里填你的 APPID AK SK  获取网址:https://ai.baidu.com/tech/ocr/general
                APP_ID = '23562478'
                API_KEY = 'hXl1TFWRDipv0WVyhj7c0Fkp'
                SECRET_KEY = 'qz1k3Ulcq9YmlRM8IHqLRQ4MHSh5TLGs'

                client = AipOcr(APP_ID, API_KEY, SECRET_KEY)

                # 定义参数变量
                options = {
                    # 定义图像方向
                    'detect_direction': 'true',
                    # 识别语言类型,默认为'CHN_ENG'中英文混合
                    'language_type': 'CHN_ENG',
                    # 是否检测语言,默认不检测。当前支持(中文、英语、日语、韩语)
                    'detect_language': 'true',
                    # 是否返回识别结果中每一行的置信度
                    'probability': 'false',
                }

                file_ph_res=os.path.dirname(file_ph)+'\\处理后' # 取文件路径的上级路径,生成文件夹
                # 若合并后文件路径不存在,创建
                if not os.path.isdir(file_ph_res):
                    os.mkdir(file_ph_res)
                is_ok = 0  # 解析文件计数器
                for root, dirs, files in os.walk(file_ph):
                    if files:
                        for file in files:
                            file_name = root + '\\'+file
                            if '.png' in file_name:
                                print(file_name)

                                img = Image.open(file_name)
                                size = img.size
                                # 准备将图片横向切割需求内容
                                weight = int(size[0])
                                height = int(size[1])
                                weight_ym_x1 =int(weight*1299/1654)
                                weight_ym_y1 =0
                                weight_ym_x2 =int(weight*1511/1654)
                                weight_ym_y2 =int(height*53/1065)
                                box = (weight_ym_x1, weight_ym_y1, weight_ym_x2, weight_ym_y2)
                                region = img.crop(box)
                                region.save(file_ph+"\\页码.jpg")

                                # 读取图片
                                with open(file_ph+"\\页码.jpg", 'rb') as fp:
                                    image_ym = fp.read()
                                # 调用通用文字识别接口
                                result = client.basicGeneral(image_ym, options)
                                time.sleep(1)
                                if result['words_result'] and '页码' in  result['words_result'][0]['words']:
                                    # 获取日期坐标
                                    weight_rq_x1 = int(weight * 1225 / 1654)
                                    weight_rq_y1 = int(height * 263 / 1065)
                                    weight_rq_x2 = int(weight * 1375 / 1654)
                                    weight_rq_y2 = int(height * 317 / 1065)
                                    # 获取收款人坐标
                                    weight_skr_x1 = int(weight * 477 / 1654)
                                    weight_skr_y1 = int(height * 503 / 1065)
                                    weight_skr_x2 = int(weight * 845 / 1654)
                                    weight_skr_y2 = int(height * 555 / 1065)
                                    # 获取金额坐标
                                    weight_je_x1 = int(weight * 471 / 1654)
                                    weight_je_y1 = int(height * 751 / 1065)
                                    weight_je_x2 = int(weight * 845 / 1654)
                                    weight_je_y2 = int(height * 800 / 1065)
                                    box_rq = (weight_rq_x1, weight_rq_y1, weight_rq_x2, weight_rq_y2)
                                    box_skr = (weight_skr_x1, weight_skr_y1, weight_skr_x2, weight_skr_y2)
                                    box_je = (weight_je_x1, weight_je_y1, weight_je_x2, weight_je_y2)
                                    region = img.crop(box_rq)
                                    region.save(file_ph + "\\日期.jpg")
                                    region = img.crop(box_skr)
                                    region.save(file_ph + "\\收款人.jpg")
                                    region = img.crop(box_je)
                                    region.save(file_ph + "\\金额.jpg")
                                    # 读取图片
                                    with open(file_ph + "\\日期.jpg", 'rb') as fp:
                                        image_rq = fp.read()
                                    # 调用通用文字识别接口
                                    result_rq = client.basicGeneral(image_rq, options)
                                    time.sleep(1)
                                    rq=result_rq['words_result'][0]['words']

                                    with open(file_ph + "\\收款人.jpg", 'rb') as fp:
                                        image_skr = fp.read()
                                    # 调用通用文字识别接口
                                    result_skr = client.basicGeneral(image_skr, options)
                                    time.sleep(1)
                                    skr=result_skr['words_result'][0]['words']

                                    with open(file_ph + "\\金额.jpg", 'rb') as fp:
                                        image_je = fp.read()
                                    # 调用通用文字识别接口
                                    result_je = client.basicGeneral(image_je, options)
                                    time.sleep(1)
                                    je=result_je['words_result'][0]['words']
                                    file_name_final=skr + "_" + rq + "_" + je + ".png"
                                else:
                                    # 获取日期坐标
                                    weight_rq_x1 = int(weight * 1225 / 1654)
                                    weight_rq_y1 = int(height * 157 / 1065)
                                    weight_rq_x2 = int(weight * 1375 / 1654)
                                    weight_rq_y2 = int(height * 205 / 1065)
                                    # 获取收款人坐标
                                    weight_skr_x1 = int(weight * 477 / 1654)
                                    weight_skr_y1 = int(height * 391 / 1065)
                                    weight_skr_x2 = int(weight * 845 / 1654)
                                    weight_skr_y2 = int(height * 441 / 1065)
                                    # 获取金额坐标
                                    weight_je_x1 = int(weight * 480 / 1654)
                                    weight_je_y1 = int(height * 635 / 1065)
                                    weight_je_x2 = int(weight * 845 / 1654)
                                    weight_je_y2 = int(height * 689 / 1065)
                                    box_rq = (weight_rq_x1, weight_rq_y1, weight_rq_x2, weight_rq_y2)
                                    box_skr = (weight_skr_x1, weight_skr_y1, weight_skr_x2, weight_skr_y2)
                                    box_je = (weight_je_x1, weight_je_y1, weight_je_x2, weight_je_y2)
                                    region = img.crop(box_rq)
                                    region.save(file_ph + "\\日期.jpg")
                                    region = img.crop(box_skr)
                                    region.save(file_ph + "\\收款人.jpg")
                                    region = img.crop(box_je)
                                    region.save(file_ph + "\\金额.jpg")
                                    # 读取图片
                                    with open(file_ph + "\\日期.jpg", 'rb') as fp:
                                        image_rq = fp.read()
                                    # 调用通用文字识别接口
                                    result_rq = client.basicGeneral(image_rq, options)
                                    time.sleep(1)
                                    rq = result_rq['words_result'][0]['words']

                                    with open(file_ph + "\\收款人.jpg", 'rb') as fp:
                                        image_skr = fp.read()
                                    # 调用通用文字识别接口
                                    result_skr = client.basicGeneral(image_skr, options)
                                    time.sleep(1)
                                    skr = result_skr['words_result'][0]['words']

                                    with open(file_ph + "\\金额.jpg", 'rb') as fp:
                                        image_je = fp.read()
                                    # 调用通用文字识别接口
                                    result_je = client.basicGeneral(image_je, options)
                                    time.sleep(1)
                                    je = result_je['words_result'][0]['words']
                                    file_name_final=skr + "_" + rq + "_" + je + ".png"

                                # 选取固定位置解析的内容
                                shutil.copy(file_name,file_ph_res+'\\'+file_name_final)
                                is_ok+=1
                if is_ok!=0:
                    print("处理成功!\n")
                    # 临时文件删除
                    os.unlink(file_ph + "\\页码.jpg")
                    os.unlink(file_ph + "\\日期.jpg")
                    os.unlink(file_ph + "\\收款人.jpg")
                    os.unlink(file_ph + "\\金额.jpg")
                else:
                    print("处理失败,未检测到png文件!\n")
            except Exception as e:
                print("处理失败!错误代码:", e)
            exit_=input("是否继续?(Y/N):")
            if exit_.upper()=='N':
                break
    if exit_.upper()=='N':
        break
os.system('pause')

相关文章

  • 图片内容定点识别

    安装模块:baidu-aip和pillow

  • 云识别(1.2以上的版本)

    云识别: 在HiAR官网上的云识别解释是:为了解决识别图片数量限制,以及上线应用不能动态修改识别图片和AR内容的问...

  • 人人不同

    2021.10.13 星期三 晴 久违的晴天,让人欣喜。 上午营销中心来人去看图片识别系统定点的客户,陪了一个...

  • 卷积神经网络

    纹理 我们要识别图片的内容,读取图片的信息,我们不但提取出图片中一些边缘的信息还需要识别出图案中纹理,这样我们才能...

  • ocr文字识别:如何将扫描图片转换成文字

    在面对图片文字的时候,我们想要编辑其中的文字内容,就需要对图片进行识别,但是如果方法不好的话,识别出来的效果也是不...

  • python表格图片识别

    表格图片的内容识别 接到个任务需要将几万张带表格的图片转换成结构化数据。 1. 大步骤 最终算是完成任务,但是识别...

  • 去除图片上的水印文字

    编辑-填充-选择内容识别 对于复杂的图片需要选取的更精确,尽量贴合文字

  • 关于移动端vin码识别的一次实践

    vin码识别所涉及的知识 如果要实现vin码识别,最简化的步骤是什么?获取图片->图片识别。重点在于图片识别,限于...

  • pytesser模块WindowsError错误解决方法

    在使用pytesser做图片文字识别时遇到WindowsError: [Error 2]错误,报错内容如下: Tr...

  • Tesseract OCR图片识别为文字

    1 场景 识别图片中的文字(识别图片中的电话号码、姓名等) 2 方案 使用Tesseract OCR软件来识别图片...

网友评论

      本文标题:图片内容定点识别

      本文链接:https://www.haomeiwen.com/subject/vxaczktx.html