美文网首页
Maximum Classifier Discrepancy f

Maximum Classifier Discrepancy f

作者: 蜉蝣之翼 | 来源:发表于2019-04-03 16:53 被阅读0次

    代码地址

    解析 语义分割域适应的代码
    训练模型 python adapt_trainer.py gta city --net drn_d_105
    adapt_trainer.py文件阅读

    • 20-23 解析命令行参数,用到: segmentation/argmyparse.py
      命令行解析
    • 选择网络drn_d_105 : 49行 get_models定位到model_util.py;33行参数drn定位到dilated_fcn.py
    rom models.dilated_fcn import DRNSegBase, DRNSegPixelClassifier
                    model_g = DRNSegBase(model_name=net_name, n_class=n_class, input_ch=input_ch)
                    model_f1 = DRNSegPixelClassifier(n_class=n_class)
    model_f2 = DRNSegPixelClassifier(n_class=n_class)
    
    • 定义网络:dilated_fcn.py drn_d_105 : drn.py 选择参数 D
     class DRNSegBase(nn.Module):
        def __init__(self, model_name, n_class, pretrained_model=None, pretrained=True, input_ch=3):
            super(DRNSegBase, self).__init__()
    
            model = drn.__dict__.get(model_name)(
                pretrained=pretrained, num_classes=1000, input_ch=input_ch)
            pmodel = nn.DataParallel(model)
            if pretrained_model is not None:
                pmodel.load_state_dict(pretrained_model)
            self.base = nn.Sequential(*list(model.children())[:-2])
    
            self.seg = nn.Conv2d(model.out_dim, n_class,
                                 kernel_size=1, bias=True)
            m = self.seg
            n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            m.weight.data.normal_(0, math.sqrt(2. / n))
            m.bias.data.zero_()
    
        def forward(self, x):
            x = self.base(x)
            x = self.seg(x)
            return x
    
        def optim_parameters(self, memo=None):
            for param in self.base.parameters():
                yield param
            for param in self.seg.parameters():
                yield param
    
    

    网络架构

    class DRN(nn.Module):
        def __init__(self, block, layers, num_classes=1000,
                     channels=(16, 32, 64, 128, 256, 512, 512, 512),
                     out_map=False, out_middle=False, pool_size=28, arch='D'):
            super(DRN, self).__init__()
            self.inplanes = channels[0]
            self.out_map = out_map
            self.out_dim = channels[-1]
            self.out_middle = out_middle
            self.arch = arch
    
          
            self.layer0 = nn.Sequential(
                    nn.Conv2d(3, channels[0], kernel_size=7, stride=1, padding=3,
                              bias=False),
                    nn.BatchNorm2d(channels[0]),
                    nn.ReLU(inplace=True)
            )
    
            self.layer1 = self._make_conv_layers(
                    channels[0], layers[0], stride=1)
            self.layer2 = self._make_conv_layers(
                    channels[1], layers[1], stride=2)
    
            self.layer3 = self._make_layer(block, channels[2], layers[2], stride=2)
            self.layer4 = self._make_layer(block, channels[3], layers[3], stride=2)
            self.layer5 = self._make_layer(block, channels[4], layers[4], dilation=2,
                                           new_level=False)
            self.layer6 = None if layers[5] == 0 else \
                self._make_layer(block, channels[5], layers[5], dilation=4,
                                 new_level=False)
           
            self.layer7 = None if layers[6] == 0 else \
                    self._make_conv_layers(channels[6], layers[6], dilation=2)
            self.layer8 = None if layers[7] == 0 else \
                    self._make_conv_layers(channels[7], layers[7], dilation=1)
    
            
            self.avgpool = nn.AvgPool2d(pool_size)
            self.fc = nn.Conv2d(self.out_dim, num_classes, kernel_size=1,
                                    stride=1, padding=0, bias=True)
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                    m.weight.data.normal_(0, math.sqrt(2. / n))
                elif isinstance(m, nn.BatchNorm2d):
                    m.weight.data.fill_(1)
    

    测试

    >>> import drn
    >>> print(drn.__dict__)
    >>> print(drn.__dict__).get('drn_d_105')
    <function drn_d_105 at 0x7f2a25fe9aa0>
    >>> model=drn.__dict__.get('drn_d_105')(pretrained=True,num_classes=1000,input_ch=3)
    Downloading: "https://tigress-web.princeton.edu/~fy/drn/models/drn_d_105-12b40979.pth" to /home/名字/.torch/models/drn_d_105-12b40979.pth
    100.0%
    

    相关文章

      网友评论

          本文标题:Maximum Classifier Discrepancy f

          本文链接:https://www.haomeiwen.com/subject/vxjzbqtx.html