美文网首页
XGBoost_增量学习

XGBoost_增量学习

作者: xieyan0811 | 来源:发表于2018-10-06 09:51 被阅读320次

1. 说明

 当我们的训练数据非常多,并且还在不断增加时,每次都用全量训练,数据过多,时间过长,此时就可以使用增量训练:用新增的数据微调校正模型。

2. 全量与增量的差异

 在使用增量训练时,最关心的问题是:全量和增量的差别,从而确定增量训练的使用场景。

 假设有200条数据,第一次训练150条,第二次训练50条,和直接用200条训练的差异在于:在第二次训练50条时,前150条数据已经不存在了,模型更拟合于后面的数据。如果我们定期增量训练,那么离当前时间越近的数据对模型影响越大,这也是我们想要的结果。但如果最后一批数据质量非常差,就可能覆盖之前的正确实例的训练结果,把模型带偏。

 同理,如果我们按时间把数据分成几部分,然后按从早到晚的顺序多次训练模型,每个模型在上一个模型基础上训练,也间接地参加了后期实例的权重。

 Xgboost提供两种增量训练的方式,一种是在当前迭代树的基础上增加新树,原树不变;另一种是当前迭代树结构不变,重新计算叶节点权重,同时也可增加新树。

 对于已存在的决策树,早期训练的实例决定了模型的结构(选择哪些特征及分裂点),后期的实例决定最终的结果(叶节点的权重和新加入的树)。

 综上,两个重点:第一,模型训练了一半,突然换了一批完全不同的数据继续训练,早期数据不再能再校正模型;第二,树一旦形成,结构就不再变化,后续的训练只能增加新树和重新计算前树的节点权重。

 我觉得,还是尽量用全量数据训练,如果数据太多,必须增量时,尽量保证增量数据的质量和数量(均匀分布),以免带偏模型。

3. 例程

 xgboost源码中有增量训练的例程:tests/python/test_training_continuation.py,其中核心部分稍做修改如下:

# -*- coding: utf-8 -*-

import xgboost as xgb
from sklearn.datasets import load_digits # 训练数据

xgb_params_01 = {}

digits_2class = load_digits(2)
X_2class = digits_2class['data']
y_2class = digits_2class['target']

dtrain_2class = xgb.DMatrix(X_2class, label=y_2class)
gbdt_03 = xgb.train(xgb_params_01, dtrain_2class, num_boost_round=3) # 训练三棵树的模型
print(gbdt_03.get_dump()) # 显示模型
gbdt_03a = xgb.train(xgb_params_01, dtrain_2class, num_boost_round=7, xgb_model=gbdt_03) # 在原模型基础上继续训练
print(gbdt_03a.get_dump())

4. 分析

 训练函数train()中有个参数xgb_model,可填写旧模型路径,或者模型指针,指定该参数后,新模型在旧模型的基础上训练。

 从代码上看,增量训练的逻辑主要在python层面,和普通的训练模型比,只是在c++底层实现了用旧模型填充learner,而非初始化learner。

 回想一下前篇讨论过的训练过程:代入实例预测->对比预测结果和实际结果差异(误差函数)及误差方向(误差函数导数)->添加新决策树改进模型。继续训练也是如此。

 从上面代码的输出结果可以看到,第一次dump的决策树是三棵,第二次dump出十棵(第一次三棵加第二次七棵)其中的前三棵与之前完全一样。就是说增量训练后,原来模型中的所有树都没变,只是在后面追加了更多的树。

 如果在params中设置’process_type’:’update’,’update’:’refresh,’refresh_leaf’:True,则前三棵树结构不变,叶节点权重改变,最终结果一共七棵树(更新前三棵,新建后四棵)。

相关文章

  • XGBoost_增量学习

    1. 说明  当我们的训练数据非常多,并且还在不断增加时,每次都用全量训练,数据过多,时间过长,此时就可以使...

  • xgboost 原理学习

    参考博客 :xgboost_原理GBM

  • 增量学习

    1.增量学习2.机器学习-增量训练方法

  • SuperMemo学习第十一天(中级)

    昨天简单介绍了增量学习的概念,今天我们来讲增量学习中的一个重要部分:增量阅读。 一、增量阅读介绍这里直接引用舍得介...

  • XGBoost_原理

    Xgboost原理 1. 说明:  难了不会,会了不难,你明白了,觉得这还用说?不明白,跳步之后,似懂非懂。...

  • [SM] Supermemo 增量音频学习(1)

    supermemo最为人称道的是它科学的算法,而最强的是增量学习功能。增量学习功能可以是文本、音频、视频等。增量学...

  • 增量学习(Incremental Learning)小综述

    以下文章来源于NewBeeNLP ,作者Maple小七 1. 增量学习的概念 1.1 什么是增量学习 人类有终身不...

  • XGBoost_源码初探

    1. 说明  本篇来读读Xgboost源码。其核心代码基本在src目录下,由C++实现,40几个cc文件,代码11...

  • XGBoost_调试方法

    1. 调试test目录下的测试用例  在测试程序后面加入以下代码,即可启动调试程序 2. 显示树结构 3. ...

  • sklearn 增量学习

    对于大数据集,在训练时会出现MemoryError 。sklearn提供了几种办法,一是从根本上节省空间,二是流式...

网友评论

      本文标题:XGBoost_增量学习

      本文链接:https://www.haomeiwen.com/subject/vxocaftx.html