美文网首页
Python拓扑排序

Python拓扑排序

作者: 轻语风 | 来源:发表于2020-07-29 02:08 被阅读0次

    拓扑排序

    几乎在所有的项目,甚至日常生活,待完成的不同任务之间通常都会存在着某些依赖关系,这些依赖关系会为它们的执行顺序行程表部分约束。对于这种依赖关系,很容易将其表示成一个有向无环图(Directed Acyclic Graph,DAG,无环是一个重要条件),并将寻找其中依赖顺序的过程称为拓扑排序(topological sorting)。

    拓扑排序要满足如下两个条件

    • 每个顶点出现且只出现一次。
    • 若A在序列中排在B的前面,则在图中不存在从B到A的路径。

    拓扑排序算法

    任何无回路的顶点活动网(AOV网)N都可以做出拓扑序列:

    • 从N中选出一个入度为0的顶点作为序列的下一顶点。
    • 从N网中删除所选顶点及其所有的出边。
    • 反复执行上面两个步骤,知道已经选出了图中的所有顶点,或者再也找不到入度为非0的顶点时算法结束。

    如果剩下入度非0的顶点,就说明N中有回路,不存在拓扑排序。

    存在回路,意味着某些活动的开始要以其自己的完成作为先决条件,这种现象成为活动之间的死锁。一种常见的顶点活动网实例是大学课程的先修课程。课程知识有前后练习,一门课可能以其他课程的知识为基础,学生想选修这门课程时,要看是否已修过所有先修课程。如果存在一个回路的话,那就意味着进入了一个循环,那么该同学就毕不了业了。

    因此可以说拓扑排序算法是为了做出满足制约关系的工作安排。
    下面我们操作一个实例,如下图是一个有向无环图:

    201831194922134.png

    用字典表示:G = { 'a':'bce', 'b':'d','c':'d','d':'','e':'cd'}
    代码实现:

    def toposort(graph):
       in_degrees = dict((u,0) for u in graph) #初始化所有顶点入度为0
       vertex_num = len(in_degrees)
       for u in graph:
          for v in graph[u]:
              in_degrees[v] += 1  #计算每个顶点的入度
    Q = [u for u in in_degrees if in_degrees[u] == 0] # 筛选入度为0的顶点
    Seq = []
    while Q:
        u = Q.pop()  #默认从最后一个删除
        Seq.append(u)
            for v in graph[u]:
               in_degrees[v] -= 1  #移除其所有指向
               if in_degrees[v] == 0:
                  Q.append(v)   #再次筛选入度为0的顶点
            if len(Seq) == vertex_num:  #如果循环结束后存在非0入度的顶点说明图中有环,不存在拓扑排序
               return Seq
            else:
               print("there's a circle.")
    G = {
     'a':'bce',
     'b':'d',
     'c':'d',
     'd':'',
     'e':'cd'
    }
    print(toposort(G))
    

    相关文章

      网友评论

          本文标题:Python拓扑排序

          本文链接:https://www.haomeiwen.com/subject/vzucrktx.html