redis的那些事儿

作者: JAVA高级架构开发 | 来源:发表于2018-08-18 20:35 被阅读16次

    近期接触一个框架,架构体系是java(spring boot微服务)、mysql、redis。 据说这个套框架能支持千万级别的访问,具体能支持多少我也没有详细的测试过,先说说他这套架构是怎么存储的,mysql的作用是做数据永存,所有的查询全是redis,这速度肯定比直接操作mysql,毕竟不是一个级别的,之前也经常用redis,但是都是用的普通的东西,今天就详细了解下redis,补充补充redis知识点。

    开始之前先了解下为啥redis比mysql快,简单说一下。。。。。(算了还是别说了,如果这个都不知道,那你也没必要往下看了)

    1.首先,redis数据格式:

    ①String

        可以是字符串,整数或者浮点数,对整个字符串或者字符串中的一部分执行操作,对整个整数或者浮点执行自增(increment)或者自减(decrement)操作。

    ②list(列表)

        一个链表,链表上的每个节点都包含了一个字符串,虫链表的两端推入或者弹出元素,根据偏移量对链表进行修剪(trim),读取单个或者多个元素,根据值查找或者移除元素。

    ③set(集合)

        包含字符串的无序收集器(unordered collection)、并且被包含的每个字符串都是独一无二的。添加,获取,移除单个元素,检查一个元素是否存在于集合中,计算交集,并集,差集,从集合里面随机获取元素。

    ④hash(散列

    包含键值对无序散列表,添加,获取,移除当键值对,获取所有键值对。

    ⑤zset(有序集合

        字符串成员(member)与浮点数分值(score)之间的有序映射,元素的排列顺序由分值的大小决定。添加,获取,删除单个元素,根据分值范围(range)或者成员来获取元素。

    (特别注意:zset是有序集合,但是尽量少用,这个速度肯定不如无序的,具体原因,自己去百度下吧)

    2.HyperLogLog

    Redis 在 2.8.9 版本添加了 HyperLogLog 结构。Redis HyperLogLog是一种使用随机化的算法,以少量内存提供集合中唯一元素数量的近似值。HyperLogLog 可以接受多个元素作为输入,并给出输入元素的基数估算值:

    基数:集合中不同元素的数量。

    比如:

    {‘a’, ‘b’, ‘c’, ‘b’, ‘a’} 的基数就是3。(注:a、b、c)

    {1, 3, 5, 7, 5, 7, 8} 的基数就是5。(注:1、3、5、7、8)

    估算值:算法给出的基数并不是精确的,可能会比实际稍微多一些或者稍微少一些,但会控制在合理的范围之内。

    HyperLogLog 的优点是,即使输入元素的数量或者体积非常非常大,计算基数所需的空间总是固定的、并且是很小的。

    在 Redis 里面,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基数。这和计算基数时,元素越多耗费内存就越多的集合形成鲜明对比。

    但是,因为 HyperLogLog 只会根据输入元素来计算基数,而不会储存输入元素本身,所以

    HyperLogLog 不能像集合那样,返回输入的各个元素。

    3.GEO

    Redis3.2版本提供了GEO功能,支持存储地理位置信息用来实现诸如摇一摇,附近位置这类依赖于地理位置信息的功能。

    ①geoadd:增加某个地理位置的坐标;

    ②geopos:获取某个地理位置的坐标;

    ③geodist:获取两个地理位置的距离;

    ④georadius:根据给定地理位置坐标获取指定范围内的地理位置集合;

    ⑤georadiusbymember:根据给定地理位置获取指定范围内的地理位置集合;

    ⑥geohash:获取某个地理位置的geohash值。

    4.Pub/Sub

    "发布/订阅"在redis中,被设计的非常轻量级和简洁,它做到了消息的“发布”和“订阅”的基本能力;但是尚未提供关于消息的持久化等各种企业级的特性。

    一个Redis client发布消息,其他多个redis client订阅消息,发布的消息“即发即失”,redis 不会持久保存发布的消息;消息订阅者也将只能得到订阅之后的消息,通道中此前的消息将无 从获得。

    消息发布者,即publish客户端,无需独占链接,你可以在publish消息的同时,使用同一个redis-client链接进行其他操作(例如:INCR等) 消息订阅者,即subscribe客户端,需要独占链接,即进行subscribe期间,redis-client无法穿插其他操作, 此时client以阻塞的方式等待“publish端”的消息;

    因此这里subscribe端需要使用单独的链接,甚至需要在额外的线程中使用。 Tcp默认连接时间固定,如果在这时间内sub端没有接收到pub端消息,或pub端没有消息产生,sub端的连接都会被强制回收, 这里就需要使用特殊手段解决,用定时器来模拟pub和sub之间的保活机制,定时器时间不能超过TCP最大连接时间,具体根据机器环境来定;

    一旦subscribe端断开链接,将会失去部分消息,即链接失效期间的消息将会丢失,所以这里就需要考虑到借助redis的list来持久化; 如果你非常关注每个消息,那么你应该基于Redis做一些额外的补充工作,如果你期望订阅是持久的,那么如下的设计思路可以借鉴:

    1) subscribe端: 首先向一个Set集合中增加“订阅者ID”, 此Set集合保存了“活跃订阅”者, 订阅者ID标记每个唯一的订阅者,此Set为 "活跃订阅者集合"

    2) subcribe端开启订阅操作,并基于Redis创建一个以 "订阅者ID" 为KEY的LIST数据结构, 此LIST中存储了所有的尚未消费的消息,此List称为 "订阅者消息队列"

    3) publish端: 每发布一条消息之后,publish端都需要遍历 "活跃订阅者集合",并依次 向每个 "订阅者消息队列" 尾部追加此次发布的消息.

    4) 到此为止,我们可以基本保证,发布的每一条消息,都会持久保存在每个 "订阅者消息队列" 中.

    5) subscribe端,每收到一个订阅消息,在消费之后,必须删除自己的 "订阅者消息队列" 头部的一条记录.

    6) subscribe端启动时,如果发现自己的 "订阅者消息队列" 有残存记录, 那么将会首先消费这些记录,然后再去订阅.

    (注意:在消费者下线的情况下,生产的消息会丢失,得使用专业的消息队列如rabbitmq等。)

    5.Redis Module

    BloomFilter(去重,https://github.com/wxisme/bloomfilter详细的代码例子)

    RedisSearch(https://my.oschina.net/u/1858920/blog/1862825)

    Redis-ML

    (注这个几个我也不是很了解,只是知道这几个点)

    6.redis分布式锁的实现方式

    实现需求:

    互斥性。在任意时刻,只有一个客户端能持有锁。

    不会发生死锁。即使有一个客户端在持有锁的期间崩溃而没有主动解锁,也能保证后续其他客户端能加锁。

    具有容错性。只要大部分的Redis节点正常运行,客户端就可以加锁和解锁。

    解铃还须系铃人。加锁和解锁必须是同一个客户端,客户端自己不能把别人加的锁给解了。

    首先我们要通过Maven引入Jedis开源组件,在pom.xml文件加入下面的代码:


    需要免费Java架构学习资料视频请加扣扣群835544715 群内提供免费的学习指导 架构资料 以及免费的解答 不懂得问题都可以在本群提出来 之后还会有职业生涯规划以及面试指导

    加锁代码


    需要免费Java架构学习资料视频请加扣扣群835544715 群内提供免费的学习指导 架构资料 以及免费的解答 不懂得问题都可以在本群提出来 之后还会有职业生涯规划以及面试指导

    代码解释:

    第一个为key,我们使用key来当锁,因为key是唯一的。

    第二个为value,我们传的是requestId,很多童鞋可能不明白,有key作为锁不就够了吗,为什么还要用到value?原因就是我们在上面讲到可靠性时,分布式锁要满足第四个条件解铃还须系铃人,通过给value赋值为requestId,我们就知道这把锁是哪个请求加的了,在解锁的时候就可以有依据。requestId可以使用UUID.randomUUID().toString()方法生成。

    第三个为nxxx,这个参数我们填的是NX,意思是SET IF NOT EXIST,即当key不存在时,我们进行set操作;若key已经存在,则不做任何操作;

    第四个为expx,这个参数我们传的是PX,意思是我们要给这个key加一个过期的设置,具体时间由第五个参数决定。

    第五个为time,与第四个参数相呼应,代表key的过期时间。

    解锁代码


    需要免费Java架构学习资料视频请加扣扣群835544715 群内提供免费的学习指导 架构资料 以及免费的解答 不懂得问题都可以在本群提出来 之后还会有职业生涯规划以及面试指导

    可以看到,我们解锁只需要两行代码就搞定了!第一行代码,我们写了一个简单的Lua脚本代码,上一次见到这个编程语言还是在《黑客与画家》里,没想到这次居然用上了。第二行代码,我们将Lua代码传到jedis.eval()方法里,并使参数KEYS[1]赋值为lockKey,ARGV[1]赋值为requestId。eval()方法是将Lua代码交给Redis服务端执行。

    那么这段Lua代码的功能是什么呢?其实很简单,首先获取锁对应的value值,检查是否与requestId相等,如果相等则删除锁(解锁)。那么为什么要使用Lua语言来实现呢?因为要确保上述操作是原子性的。关于非原子性会带来什么问题,可以阅读【解锁代码-错误示例2】。那么为什么执行eval()方法可以确保原子性,源于Redis的特性,下面是官网对eval命令的部分解释:

    需要免费Java架构学习资料视频请加扣扣群835544715 群内提供免费的学习指导 架构资料 以及免费的解答 不懂得问题都可以在本群提出来 之后还会有职业生涯规划以及面试指导

    简单来说,就是在eval命令执行Lua代码的时候,Lua代码将被当成一个命令去执行,并且直到eval命令执行完成,Redis才会执行其他命令。

    注:还有简单的SETNX(可以设置过期时间)锁

    7.keys和scan

    keys查找所有符合给定模式pattern的key。

    KEYS *匹配数据库中所有key。

    KEYS h?llo匹配hello,hallo和hxllo等。

    KEYS h*llo匹配hllo和heeeeello等。

    KEYS h[ae]llo匹配hello和hallo,但不匹配hillo。

    特殊符号用\隔开

    KEYS的速度非常快,但在一个大的数据库中使用它仍然可能造成性能问题,如果你需要从一个数据集中查找特定的key,你最好还是用 Redis 的集合结构(set)来代替。

    可用版本:

    >= 1.0.0

    时间复杂度:

    O(N),N为数据库中key的数量。

    返回值:

    符合给定模式的key列表。

    SCAN cursor [MATCH pattern] [COUNT count]

    SCAN命令及其相关的SSCAN命令、HSCAN命令和ZSCAN命令都用于增量地迭代(incrementally iterate)一集元素(a collection of elements):

    SCAN命令用于迭代当前数据库中的数据库键。

    SSCAN命令用于迭代集合键中的元素。

    HSCAN命令用于迭代哈希键中的键值对。

    ZSCAN命令用于迭代有序集合中的元素(包括元素成员和元素分值)。

    以上列出的四个命令都支持增量式迭代, 它们每次执行都只会返回少量元素, 所以这些命令可以用于生产环境, 而不会出现像KEYS命令、SMEMBERS命令带来的问题 —— 当KEYS命令被用于处理一个大的数据库时, 又或者SMEMBERS命令被用于处理一个大的集合键时, 它们可能会阻塞服务器达数秒之久。

    不过, 增量式迭代命令也不是没有缺点的: 举个例子, 使用SMEMBERS命令可以返回集合键当前包含的所有元素, 但是对于SCAN这类增量式迭代命令来说, 因为在对键进行增量式迭代的过程中, 键可能会被修改, 所以增量式迭代命令只能对被返回的元素提供有限的保证 (offer limited guarantees about the returned elements)。

    因为SCANSSCANHSCANZSCAN四个命令的工作方式都非常相似, 所以这个文档会一并介绍这四个命令, 但是要记住:

    SSCAN命令、HSCAN命令和ZSCAN命令的第一个参数总是一个数据库键。

    SCAN命令则不需要在第一个参数提供任何数据库键 —— 因为它迭代的是当前数据库中的所有数据库键。

    scan 0默认返回10条数据。

    127.0.0.1:6379> scan 0

    1) "81920"

    2)  1) "CMD:1000004739:4"

    2) "CMD:1000010475:2"

    3) "CMD:380071400001208:766"

    4) "CMD:1000006866:LIST"

    5) "CMD:380071400001208:20415"

    6) "CMD:380071400001231:21530"

    7) "CMD:380071400001208:21780"

    8) "CMD:7485630165:LIST"

    9) "CMD:1000001545:2"

    10) "CMD:380071400001231:4387"

    可以用count 参数指定返回数据量:

    127.0.0.1:6379>scan 0 count 100

    1) "104448"

    2)   1) "CMD:1000004739:4"

    2) "CMD:1000010475:2"

    3) "CMD:380071400001208:766"

    4) "CMD:1000006866:LIST"

    5) "CMD:380071400001208:20415"

    6) "CMD:380071400001231:21530"

    7) "CMD:380071400001208:21780"

    8) "CMD:7485630165:LIST"

    9) "CMD:1000001545:2"

    10) "CMD:380071400001231:4387"

    ......

    94) "CMD:201610200062:6"

    95) "CMD:VF3748211006:3"

    96) "CMD:1000009121:4"

    97) "CMD:380071400001231:6563"

    98) "CMD:1000010252:ID"

    99) "CMD:1000005261:5"

    100) "SERVER:45568_0"

    使用match 参数来匹配模式:

    127.0.0.1:6379>scan 0 match CMD* count 100

    1) "104448"

    2)  1) "CMD:1000004739:4"

    2) "CMD:1000010475:2"

    3) "CMD:380071400001208:766"

    4) "CMD:1000006866:LIST"

    5) "CMD:380071400001208:20415"

    6) "CMD:380071400001231:21530"

    7) "CMD:380071400001208:21780"

    8) "CMD:7485630165:LIST"

    9) "CMD:1000001545:2"

    10) "CMD:380071400001231:4387"

    ......

    86) "CMD:201610200062:6"

    87) "CMD:VF3748211006:3"

    88) "CMD:1000009121:4"

    89) "CMD:380071400001231:6563"

    90) "CMD:1000010252:ID"

    91) "CMD:1000005261:5"

    最重要的是scan不会阻塞服务器,现网环境也可以用,真方便。

    8.使用redis一些小的注意

    ①使用list结构作为队列,rpush生产消息,lpop消费消息。当lpop没有消息的时候,要适当sleep一会再重试。

    ②list还有个指令叫blpop,在没有消息的时候,它会阻塞住直到消息到来。

    ③redis如何实现延时队列:使用sortedset,拿时间戳作为score,消息内容作为key调用zadd来生产消息,消费者用zrangebyscore指令获取N秒之前的数据轮询进行处理。

    ④如果大量的key过期时间设置的过于集中,到过期的那个时间点,redis可能会出现短暂的卡顿现象。一般需要在时间上加一个随机值,使得过期时间分散一些。

    ⑤bgsave做镜像全量持久化,aof做增量持久化。因为bgsave会耗费较长时间,不够实时,在停机的时候会导致大量丢失数据,所以需要aof来配合使用。在redis实例重启时,优先使用aof来恢复内存的状态,如果没有aof日志,就会使用rdb文件来恢复。

    ⑥aof文件过大恢复时间过长怎么办?你告诉面试官,Redis会定期做aof重写,压缩aof文件日志大小。

    ⑦Redis4.0之后有了混合持久化的功能,将bgsave的全量和aof的增量做了融合处理,这样既保证了恢复的效率又兼顾了数据的安全性。

    ⑧如果突然机器掉电会怎样?取决于aof日志sync属性的配置,如果不要求性能,在每条写指令时都sync一下磁盘,就不会丢失数据。但是在高性能的要求下每次都sync是不现实的,一般都使用定时sync,比如1s1次,这个时候最多就会丢失1s的数据。

    ⑨Pipeline有什么好处,为什么要用pipeline?

    可以将多次IO往返的时间缩减为一次,前提是pipeline执行的指令之间没有因果相关性。使用redis-benchmark进行压测的时候可以发现影响redis的QPS峰值的一个重要因素是pipeline批次指令的数目。

    ⑩Redis的同步机制

    Redis可以使用主从同步,从从同步。第一次同步时,主节点做一次bgsave,并同时将后续修改操作记录到内存buffer,待完成后将rdb文件全量同步到复制节点,复制节点接受完成后将rdb镜像加载到内存。加载完成后,再通知主节点将期间修改的操作记录同步到复制节点进行重放就完成了同步过程。

    ⑪集群的原理是什么?

    Redis Sentinal着眼于高可用,在master宕机时会自动将slave提升为master,继续提供服务。

    Redis Cluster着眼于扩展性,在单个redis内存不足时,使用Cluster进行分片存储。

    相关文章

      网友评论

        本文标题:redis的那些事儿

        本文链接:https://www.haomeiwen.com/subject/vzxqiftx.html