题目:
给你一个正整数数组 nums 。每一次操作中,你可以从 nums 中选择 任意 一个数并将它减小到 恰好 一半。(注意,在后续操作中你可以对减半过的数继续执行操作)
请你返回将 nums 数组和 至少 减少一半的 最少 操作数。
示例 1:
输入:nums = [5,19,8,1]
输出:3
解释:初始 nums 的和为 5 + 19 + 8 + 1 = 33 。
以下是将数组和减少至少一半的一种方法:
选择数字 19 并减小为 9.5 。
选择数字 9.5 并减小为 4.75 。
选择数字 8 并减小为 4 。
最终数组为 [5, 4.75, 4, 1] ,和为 5 + 4.75 + 4 + 1 = 14.75 。
nums 的和减小了 33 - 14.75 = 18.25 ,减小的部分超过了初始数组和的一半,18.25 >= 33/2 = 16.5 。
我们需要 3 个操作实现题目要求,所以返回 3 。
可以证明,无法通过少于 3 个操作使数组和减少至少一半。
示例 2:
输入:nums = [3,8,20]
输出:3
解释:初始 nums 的和为 3 + 8 + 20 = 31 。
以下是将数组和减少至少一半的一种方法:
选择数字 20 并减小为 10 。
选择数字 10 并减小为 5 。
选择数字 3 并减小为 1.5 。
最终数组为 [1.5, 8, 5] ,和为 1.5 + 8 + 5 = 14.5 。
nums 的和减小了 31 - 14.5 = 16.5 ,减小的部分超过了初始数组和的一半, 16.5 >= 31/2 = 16.5 。
我们需要 3 个操作实现题目要求,所以返回 3 。
可以证明,无法通过少于 3 个操作使数组和减少至少一半。
提示:
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^7
java代码:
class Solution {
public int halveArray(int[] nums) {
long sum = 0;
double res = 0;
double target = 0;
int count = 0;
PriorityQueue<Double> que = new PriorityQueue<>((o1,o2) -> Double.compare(o2, o1));
for (int i = 0; i < nums.length; i++) {
sum += nums[i];
que.add(nums[i] * 1.0);
}
target = sum * 1.0 / 2;
// 比较已减少的数量 与 和的一半
while (res < target) {
double temp = que.poll();
res += temp / 2;
que.add(temp / 2);
count++;
}
return count;
}
}
网友评论