美文网首页
使用PipeLine让代码更简洁

使用PipeLine让代码更简洁

作者: 1nvad3r | 来源:发表于2020-09-24 22:07 被阅读0次
    import pandas as pd
    from sklearn.model_selection import train_test_split
    
    # Read the data
    X_full = pd.read_csv('../input/train.csv', index_col='Id')
    X_test_full = pd.read_csv('../input/test.csv', index_col='Id')
    
    # Remove rows with missing target, separate target from predictors
    X_full.dropna(axis=0, subset=['SalePrice'], inplace=True)
    y = X_full.SalePrice
    X_full.drop(['SalePrice'], axis=1, inplace=True)
    
    # Break off validation set from training data
    X_train_full, X_valid_full, y_train, y_valid = train_test_split(X_full, y, 
                                                                    train_size=0.8, test_size=0.2,
                                                                    random_state=0)
    
    # "Cardinality" means the number of unique values in a column
    # Select categorical columns with relatively low cardinality (convenient but arbitrary)
    categorical_cols = [cname for cname in X_train_full.columns if
                        X_train_full[cname].nunique() < 10 and 
                        X_train_full[cname].dtype == "object"]
    
    # Select numerical columns
    numerical_cols = [cname for cname in X_train_full.columns if 
                    X_train_full[cname].dtype in ['int64', 'float64']]
    
    # Keep selected columns only
    my_cols = categorical_cols + numerical_cols
    X_train = X_train_full[my_cols].copy()
    X_valid = X_valid_full[my_cols].copy()
    X_test = X_test_full[my_cols].copy()
    
    from sklearn.compose import ColumnTransformer
    from sklearn.pipeline import Pipeline
    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import OneHotEncoder
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.metrics import mean_absolute_error
    
    # Preprocessing for numerical data
    numerical_transformer = SimpleImputer(strategy='constant')
    
    # Preprocessing for categorical data
    categorical_transformer = Pipeline(steps=[
        ('imputer', SimpleImputer(strategy='most_frequent')),
        ('onehot', OneHotEncoder(handle_unknown='ignore'))
    ])
    
    # Bundle preprocessing for numerical and categorical data
    preprocessor = ColumnTransformer(
        transformers=[
            ('num', numerical_transformer, numerical_cols),
            ('cat', categorical_transformer, categorical_cols)
        ])
    
    # Define model
    model = RandomForestRegressor(n_estimators=100, random_state=0)
    
    # Bundle preprocessing and modeling code in a pipeline
    clf = Pipeline(steps=[('preprocessor', preprocessor),
                          ('model', model)
                         ])
    
    # Preprocessing of training data, fit model 
    clf.fit(X_train, y_train)
    
    # Preprocessing of validation data, get predictions
    preds = clf.predict(X_valid)
    
    print('MAE:', mean_absolute_error(y_valid, preds))
    
    

    相关文章

      网友评论

          本文标题:使用PipeLine让代码更简洁

          本文链接:https://www.haomeiwen.com/subject/wprayktx.html