美文网首页ElasticSearch入门ElastichSearchelasticsearch
七、Elasticsearch快速入门案例(3)-聚合分析

七、Elasticsearch快速入门案例(3)-聚合分析

作者: 编程界的小学生 | 来源:发表于2017-07-01 11:27 被阅读371次

    1、解释说明:
    聚合分析就是对应于数据库的聚合函数。
    ES中用aggs标签

    2、实战演练
    需求1:计算所有商品的价格总和

    GET /ecommerce/product/_search
    {
      "aggs": {
        "sum_price": {
          "sum": {
            "field": "price"
          }
        }
      }
    }
    

    结果:

    {
      "took": 3,
      "timed_out": false,
      "_shards": {
        "total": 5,
        "successful": 5,
        "failed": 0
      },
      "hits": {
        "total": 4,
        "max_score": 1,
        "hits": [
          {
            "_index": "ecommerce",
            "_type": "product",
            "_id": "2",
            "_score": 1,
            "_source": {
              "name": "jiajieshi yagao",
              "desc": "youxiao fangzhu",
              "price": 25,
              "producer": "jiajieshi producer",
              "tags": [
                "fangzhu"
              ]
            }
          },
          {
            "_index": "ecommerce",
            "_type": "product",
            "_id": "4",
            "_score": 1,
            "_source": {
              "name": "special yagao",
              "desc": "special meibai",
              "price": 50,
              "producer": "special  yagao producer",
              "tags": [
                "meibai"
              ]
            }
          },
          {
            "_index": "ecommerce",
            "_type": "product",
            "_id": "1",
            "_score": 1,
            "_source": {
              "name": "gaolujie yagao",
              "desc": "gaoxiao meibai",
              "price": 30,
              "producer": "gaolujie producer",
              "tags": [
                "meibai",
                "fangzhu"
              ]
            }
          },
          {
            "_index": "ecommerce",
            "_type": "product",
            "_id": "3",
            "_score": 1,
            "_source": {
              "name": "zhonghua yagao",
              "desc": "caoben zhiwu",
              "price": 40,
              "producer": "zhonghua producer",
              "tags": [
                "qingxin"
              ]
            }
          }
        ]
      },
      "aggregations": {
        "sum_price": {
          "value": 145
        }
      }
    }
    

    结果发现只有最后这部分是我们需要的,上面所有商品的记录我们不想输出,可以用size:0去控制,如下:

    GET /ecommerce/product/_search
    {
      "size": 0,
      "aggs": {
        "sum_price": {
          "sum": {
            "field": "price"
          }
        }
      }
    }
    

    输出结果:

    {
      "took": 1,
      "timed_out": false,
      "_shards": {
        "total": 5,
        "successful": 5,
        "failed": 0
      },
      "hits": {
        "total": 4,
        "max_score": 0,
        "hits": []
      },
      "aggregations": {
        "sum_price": {
          "value": 145
        }
      }
    }
    

    需求2:找出最贵的商品

    GET /ecommerce/product/_search
    {
      "size": 0,
      "aggs": {
        "max_price": {
          "max": {
            "field": "price"
          }
        }
      }
    }
    

    需求3:计算价钱的平均值

    GET /ecommerce/product/_search
    {
      "size": 0, 
      "aggs": {
        "avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    }
    

    需求4:计算每个tag下的商品数量
    需要用terms标签,需要先将所用字段正排索引下,否则报错
    正排索引:

    PUT /ecommerce/_mapping/product
    {
      "properties": {
        "tags": {
          "type": "text",
          "fielddata": true
        }
      }
    }
    
    GET /ecommerce/product/_search
    {
      "size": 0, 
      "aggs": {
        "group_by_tag" : {
          "terms": {
            "field": "tags"
          }
        }
      }
    }
    

    输出结果

    {
      "took": 5,
      "timed_out": false,
      "_shards": {
        "total": 5,
        "successful": 5,
        "failed": 0
      },
      "hits": {
        "total": 4,
        "max_score": 0,
        "hits": []
      },
      "aggregations": {
        "group_by_tag": {
          "doc_count_error_upper_bound": 0,
          "sum_other_doc_count": 0,
          "buckets": [
            {
              "key": "fangzhu",
              "doc_count": 2
            },
            {
              "key": "meibai",
              "doc_count": 2
            },
            {
              "key": "qingxin",
              "doc_count": 1
            }
          ]
        }
      }
    }
    

    需求5:对名称中包含yagao的商品,计算每个tag下的商品数量

    GET /ecommerce/product/_search
    {
      "query": {
        "match": {
          "name": "yagao"
        }
      },
      "aggs": {
        "group_by_tags": {
          "terms": {
            "field": "tags"
          }
        }
      }
    }
    

    需求6:先按照tags分组,在计算每组的商品的平均价格

    GET /ecommerce/product/_search
    {
      "size": 0, 
      "aggs": {
        "group_by_tags": {
          "terms": {
            "field": "tags"
          },
          "aggs": {
            "avg_price": {
              "avg": {
                "field": "price"
              }
            }
          }
        }
      }
    }
    

    需求7:先按照tags分组,在计算每组的商品的平均价格,并按照价格倒序排序

    GET /ecommerce/product/_search
    {
      "size": 0, 
      "aggs": {
        "group_by_tags": {
          "terms": {
            "field": "tags",
            "order": {
              "avg_price": "desc"
            }
          },
          "aggs": {
            "avg_price": {
              "avg": {
                "field": "price"
              }
            }
          }
        }
      }
    }
    

    需求8:按照指定的价格范围区间进行分组,然后在每组内再按照tags进行分组,最后在计算每组的平均价格

    GET /ecommerce/product/_search
    {
      "size": 0,
      "aggs": {
        "range_by_price": {
          "range": {
            "field": "price",
            "ranges": [
              {
                "from": 0,
                "to": 20
              },
              {
                "from": 20,
                "to": 40
              },
              {
                "from": 40,
                "to": 50
              }
            ]
          },
          "aggs": {
            "group_by_tags": {
              "terms": {
                "field": "tags"
              },
              "aggs": {
                "avg_price": {
                  "avg": {
                    "field": "price"
                  }
                }
              }
            }
          }
        }
      }
    }
    

    若有兴趣,欢迎来加入群,【Java初学者学习交流群】:458430385,此群有Java开发人员、UI设计人员和前端工程师。有问必答,共同探讨学习,一起进步!
    欢迎关注我的微信公众号【Java码农社区】,会定时推送各种干货:


    qrcode_for_gh_577b64e73701_258.jpg

    相关文章

      网友评论

        本文标题:七、Elasticsearch快速入门案例(3)-聚合分析

        本文链接:https://www.haomeiwen.com/subject/wvdicxtx.html