美文网首页我爱编程
吴恩达deep_learning_week3_BP神经网络

吴恩达deep_learning_week3_BP神经网络

作者: PerfectDemoT | 来源:发表于2018-03-29 23:33 被阅读0次

    吴恩达deep_learning_week3_BP神经网络

    标签: 机器学习深度学习


    这是吴恩达深度学习里的第二次作业

    实现BP神经网络

    1. 首先先导入包
    #先导入包
    import numpy as np
    import matplotlib.pyplot as plt
    from testCases import *
    import sklearn
    import sklearn.datasets
    import sklearn.linear_model
    from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
    import matplotlib.pyplot as plt
    import pylab
    
    1. 然后我们设置一个随机数种子备用,再导入数据,然后可视化一下(PS:这个不知道什么原因,显示不出来,虽然原来的代码有问题会报错,不过我看了库中函数的运行方式,将Y修改后不会报错了,但是还是显示不出,就很迷,不过对后面的结果没影响)
    np.random.seed(1) # set a seed so that the results are consistent
    
    #现在开始导入数据,一个X一个Y
    X, Y = load_planar_dataset()
    
    print (np.shape(X))
    print (np.shape(Y))
    #可知,这个X为一个包含400个具有两个参数样本的矩阵,Y为其标签
    
    #将数据可视化一下,看起来像一朵红花(很奇怪,我这里已开始运行不了,然后改正后不报错了,不过还是显示不出图片)
    plt.scatter(X[0, :], X[1, :], c=Y.reshape(X[0,:].shape), s=40, cmap=plt.cm.Spectral);
    
    小红花
    1. 现在,我们可以来处理这些数据了,比如,先看看这些矩阵的大小
    ### START CODE HERE ### (≈ 3 lines of code)
    shape_X = X.shape
    shape_Y = Y.shape
    m = X.shape[1]  # training set size
    ### END CODE HERE ###
    
    print ('The shape of X is: ' + str(shape_X))
    print ('The shape of Y is: ' + str(shape_Y))
    print ('I have m = %d training examples!' % (m))
    
    1. 然后呢,老师贴心地给了训练好了的单个logistic分类器,我们可以试试
    # Train the logistic regression classifier(这里先用写好的分类器训练一下)
    clf = sklearn.linear_model.LogisticRegressionCV();
    clf.fit(X.T, Y.T);
    
    1. 但是呢,你会发现,这个的分类效果并不好,准确率只有百分之四十九
    # Plot the decision boundary for logistic regression
    plot_decision_boundary(lambda x: clf.predict(x), X, Y)
    plt.title("Logistic Regression")
    
    # Print accuracy,现在这里画出这些点的分类边界(好吧这里有点小问题,还是上面那个画图的问题,)
    LR_predictions = clf.predict(X.T)
    print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) +
           '% ' + "(percentage of correctly labelled datapoints)")
    #可以看出,这个线性分类器效果并不好,就算是训练集,准确率也很低所以这里就要用bp网络了
    
    #这是输出
    Accuracy of logistic regression: 47 % (percentage of correctly labelled datapoints)
    

    现在开始真正的弄bp神经网络的各层啦

    1. 首先,我们设计一个定义网络结构的函数
    #首先定义各层网络的结构
    def layer_sizes(X, Y):
        """
        Arguments:
        X -- input dataset of shape (input size, number of examples)
        Y -- labels of shape (output size, number of examples)
    
        Returns:
        n_x -- the size of the input layer
        n_h -- the size of the hidden layer
        n_y -- the size of the output layer
        """
        ### START CODE HERE ### (≈ 3 lines of code)
        n_x = X.shape[0]  # size of input layer
        n_h = 4
        n_y = Y.shape[0]  # size of output layer
        ### END CODE HERE ###
        return (n_x, n_h, n_y)
    

    返回的是X输入的参数个数,隐藏层的神经元个数,输出层神经元个数,现在我们来输出网络看一看

    #现在输出来看看我们的网络结构
    X_assess, Y_assess = layer_sizes_test_case() #这里是将数据导入
    (n_x, n_h, n_y) = layer_sizes(X_assess, Y_assess)
    print("The size of the input layer is: n_x = " + str(n_x))
    print("The size of the hidden layer is: n_h = " + str(n_h))
    print("The size of the output layer is: n_y = " + str(n_y))
    

    输出是这样(就不截图了。。。)

    The size of the input layer is: n_x = 5
    The size of the hidden layer is: n_h = 4
    The size of the output layer is: n_y = 2
    

    2 . 现在来初始化(函数里面本身就写了随机的种子,这里为2)

    #接下来是初始化函数
    # GRADED FUNCTION: initialize_parameters
    def initialize_parameters(n_x, n_h, n_y):
        """
        Argument:
        n_x -- size of the input layer
        n_h -- size of the hidden layer
        n_y -- size of the output layer
    
        Returns:
        params -- python dictionary containing your parameters:
                        W1 -- weight matrix of shape (n_h, n_x)
                        b1 -- bias vector of shape (n_h, 1)
                        W2 -- weight matrix of shape (n_y, n_h)
                        b2 -- bias vector of shape (n_y, 1)
        """
    
        np.random.seed(2)  # we set up a seed so that your output matches ours although the initialization is random.
    
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = np.random.randn(n_h , n_x) * 0.01
        b1 = np.zeros((n_h , 1)) #记着这里是两个括号
        W2 = np.random.randn(n_y , n_h) * 0.01
        b2 = np.zeros((n_y , 1))
        ### END CODE HERE ###
    
        assert (W1.shape == (n_h, n_x))
        assert (b1.shape == (n_h, 1))
        assert (W2.shape == (n_y, n_h))
        assert (b2.shape == (n_y, 1))
    
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
    
        return parameters
    

    然后现在来看看初始化的样子
    代码长这样:

    #现在可以看看初始化结构咋样
    n_x, n_h, n_y = initialize_parameters_test_case()
    
    parameters = initialize_parameters(n_x, n_h, n_y)
    print("W1 = " + str(parameters["W1"]))
    print("b1 = " + str(parameters["b1"]))
    print("W2 = " + str(parameters["W2"]))
    print("b2 = " + str(parameters["b2"]))
    

    输出是

    W1 = [[-0.00416758 -0.00056267]
     [-0.02136196  0.01640271]
     [-0.01793436 -0.00841747]
     [ 0.00502881 -0.01245288]]
    b1 = [[ 0.]
     [ 0.]
     [ 0.]
     [ 0.]]
    W2 = [[-0.01057952 -0.00909008  0.00551454  0.02292208]]
    b2 = [[ 0.]]
    
    1. 前期准备算是做的差不多啦,现在开始正向传播啦
      先上公式:


      前向传播

      大家注意看23到26行,那里是正向传播的精髓之处

    #OK,现在开始正向传播啦
    # GRADED FUNCTION: forward_propagation​
    def forward_propagation(X, parameters):
        """
        Argument:
        X -- input data of size (n_x, m)
        parameters -- python dictionary containing your parameters (output of initialization function)
    
        Returns:
        A2 -- The sigmoid output of the second activation
        cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"
        """
        # Retrieve each parameter from the dictionary "parameters"
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = parameters['W1']
        b1 = parameters['b1']
        W2 = parameters['W2']
        b2 = parameters['b2']
        ### END CODE HERE ###
    
        # Implement Forward Propagation to calculate A2 (probabilities)
        ### START CODE HERE ### (≈ 4 lines of code)
        Z1 = np.dot(W1 , X) + b1
        A1 = np.tanh(Z1)
        Z2 = np.dot(W2 , A1) + b2
        A2 = sigmoid(Z2)
        ### END CODE HERE ###
    
        assert (A2.shape == (1, X.shape[1]))
    
        cache = {"Z1": Z1,
                 "A1": A1,
                 "Z2": Z2,
                 "A2": A2}
    
        return A2, cache
    

    好了,正向传播完毕后,我们来看看结果,结果输出的代码如下:

    #现在来看看正向传播的结果
    X_assess, parameters = forward_propagation_test_case()
    
    A2, cache = forward_propagation(X_assess, parameters)
    
    # Note: we use the mean here just to make sure that your output matches ours.
    print(np.mean(cache['Z1']) ,np.mean(cache['A1']),np.mean(cache['Z2']),np.mean(cache['A2']))
    

    然后,结果如下:

    -0.000499755777742 -0.000496963353232 0.000438187450959 0.500109546852
    
    1. 到了这里,我们可以来看看cost函数了,
      先看看公式:
      $$J=-\frac1m\sum_{i=0}m(y{(i)}log(a{[2](i)})+(1-y_{(i)})log(1-a{2}))$$

    下面是他的代码(重点关注28,29行)

    #现在来算算代价函数J
    #GRADED
    #FUNCTION: compute_cost
    
    def compute_cost(A2, Y, parameters):
        """
        Computes the cross-entropy cost given in equation (13)
    
        Arguments:
        A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
        Y -- "true" labels vector of shape (1, number of examples)
        parameters -- python dictionary containing your parameters W1, b1, W2 and b2
    
        Returns:
        cost -- cross-entropy cost given equation (13)
        """
    
        m = Y.shape[1]  # number of example
    
        # Retrieve W1 and W2 from parameters
        ### START CODE HERE ### (≈ 2 lines of code)
        W1 = parameters['W1']
        W2 = parameters['W2']
        ### END CODE HERE ###
    
        # Compute the cross-entropy cost
        ### START CODE HERE ### (≈ 2 lines of code)
        logprobs = np.multiply(np.log(A2), Y) + np.multiply(np.log(1 - A2), 1 - Y)
        cost = -np.sum(logprobs) / m
        ### END CODE HERE ###
    
        cost = np.squeeze(cost)  # makes sure cost is the dimension we expect.
        # E.g., turns [[17]] into 17
        assert (isinstance(cost, float))
    
        return cost
    

    我在完成这个的时候通过这个发现了一个前面犯的一个错误,程序一直警告logprobs和cost这两个参数运算的时候不可用,于是我怀疑是不是有小于零的参数存在式子中,最后发现,A2在前面的计算中我已开始用的tanh函数,和A1混啦,其实A2要用sigmoid函数,A1是tanh函数

    OK,我们已经完成了cost函数的代码,我么来看看效果
    下面是输出代码

    #现在来检测下代价函数的计算
    A2, Y_assess, parameters = compute_cost_test_case()
    print("cost = " + str(compute_cost(A2, Y_assess, parameters)))
    

    输出是这样

    cost = 0.692919893776
    
    1. 难点来了,反向传播。(重点是32-37行,这是精髓)
    #难点来了,反向传播
    # GRADED FUNCTION: backward_propagation
    def backward_propagation(parameters, cache, X, Y):
        """
        Implement the backward propagation using the instructions above.
    
        Arguments:
        parameters -- python dictionary containing our parameters
        cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
        X -- input data of shape (2, number of examples)
        Y -- "true" labels vector of shape (1, number of examples)
    
        Returns:
        grads -- python dictionary containing your gradients with respect to different parameters
        """
        m = X.shape[1]
    
        # First, retrieve W1 and W2 from the dictionary "parameters".
        ### START CODE HERE ### (≈ 2 lines of code)
        W1 = parameters['W1']
        W2 = parameters['W2']
        ### END CODE HERE ###
    
        # Retrieve also A1 and A2 from dictionary "cache".
        ### START CODE HERE ### (≈ 2 lines of code)
        A1 = cache['A1']
        A2 = cache['A2']
        ### END CODE HERE ###
    
        # Backward propagation: calculate dW1, db1, dW2, db2.
        ### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)
        dZ2 = A2 - Y
        dW2 = np.dot(dZ2 , A1.T) / m
        db2 = np.sum(dZ2 , axis = 1 , keepdims = True) / m
        dZ1 = np.dot(W2.T , dZ2) * (1 - A1**2)
        dW1 = np.dot(dZ1 , X.T) / m
        db1 = np.sum(dZ1 , axis = 1 , keepdims = True) / m
        ### END CODE HERE ###
    
        grads = {"dW1": dW1,
                 "db1": db1,
                 "dW2": dW2,
                 "db2": db2}
    
        return grads
    

    对于此,我们完成了反向传播,
    现在来看看输出代码

    #反向传播完毕,我们来看看
    parameters, cache, X_assess, Y_assess = backward_propagation_test_case()
    
    grads = backward_propagation(parameters, cache, X_assess, Y_assess)
    print ("dW1 = "+ str(grads["dW1"]))
    print ("db1 = "+ str(grads["db1"]))
    print ("dW2 = "+ str(grads["dW2"]))
    print ("db2 = "+ str(grads["db2"]))
    

    输出是这样的

    dW1 = [[ 0.01018708 -0.00708701]
     [ 0.00873447 -0.0060768 ]
     [-0.00530847  0.00369379]
     [-0.02206365  0.01535126]]
    db1 = [[-0.00069728]
     [-0.00060606]
     [ 0.000364  ]
     [ 0.00151207]]
    dW2 = [[ 0.00363613  0.03153604  0.01162914 -0.01318316]]
    db2 = [[ 0.06589489]]
    
    1. 好了,反向传播页做完了,现在开始更新参数矩阵吧!!!
    #反向传播完毕后,开始更新参数
    # GRADED FUNCTION: update_parameters​
    def update_parameters(parameters, grads, learning_rate=1.2):
        """
        Updates parameters using the gradient descent update rule given above
    
        Arguments:
        parameters -- python dictionary containing your parameters
        grads -- python dictionary containing your gradients
    
        Returns:
        parameters -- python dictionary containing your updated parameters
        """
        # Retrieve each parameter from the dictionary "parameters"
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = parameters['W1']
        b1 = parameters['b1']
        W2 = parameters['W2']
        b2 = parameters['b2']
        ### END CODE HERE ###
    
        # Retrieve each gradient from the dictionary "grads"
        ### START CODE HERE ### (≈ 4 lines of code)
        dW1 = grads['dW1']
        db1 = grads['db1']
        dW2 = grads['dW2']
        db2 = grads['db2']
        ## END CODE HERE ###
    
        # Update rule for each parameter
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = W1 - learning_rate * dW1
        b1 = b1 - learning_rate * db1
        W2 = W2 - learning_rate * dW2
        b2 = b2 - learning_rate * db2
        ### END CODE HERE ###
    
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
    
        return parameters
    

    老规矩,跑一跑(代码如下)

    #现在验证一下反向传播算法的参数更新
    parameters, grads = update_parameters_test_case()
    parameters = update_parameters(parameters, grads)
    
    print("W1 = " + str(parameters["W1"]))
    print("b1 = " + str(parameters["b1"]))
    print("W2 = " + str(parameters["W2"]))
    print("b2 = " + str(parameters["b2"]))
    

    结果长这样:

    W1 = [[-0.00643025  0.01936718]
     [-0.02410458  0.03978052]
     [-0.01653973 -0.02096177]
     [ 0.01046864 -0.05990141]]
    b1 = [[ -1.02420756e-06]
     [  1.27373948e-05]
     [  8.32996807e-07]
     [ -3.20136836e-06]]
    W2 = [[-0.01041081 -0.04463285  0.01758031  0.04747113]]
    b2 = [[ 0.00010457]]
    

    ODK,各种功能函数终于可以说是写的差不多啦,现在来整合一个model函数吧

    #好了,所有的函数都写完了,现在来整合一下,组成一个分类器模型
    # GRADED FUNCTION: nn_model​
    def nn_model(X, Y, n_h, num_iterations=10000, print_cost=False):
        """
        Arguments:
        X -- dataset of shape (2, number of examples)
        Y -- labels of shape (1, number of examples)
        n_h -- size of the hidden layer
        num_iterations -- Number of iterations in gradient descent loop
        print_cost -- if True, print the cost every 1000 iterations
    
        Returns:
        parameters -- parameters learnt by the model. They can then be used to predict.
        """
    
        np.random.seed(3)
        n_x = layer_sizes(X, Y)[0]
        n_y = layer_sizes(X, Y)[2]
    
        # Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".
        ### START CODE HERE ### (≈ 5 lines of code)
        parameters = initialize_parameters(n_x , n_h , n_y)
        W1 = parameters['W1']
        b1 = parameters['b1']
        W2 = parameters['W2']
        b2 = parameters['b2']
        ### END CODE HERE ###
    
        # Loop (gradient descent)
        import pdb
    
        for i in range(0, num_iterations):
    
            ### START CODE HERE ### (≈ 4 lines of code)
            # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
            A2, cache = forward_propagation(X , parameters)
    
            # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
            cost = compute_cost(A2 , Y , parameters)
    
            # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
            grads = backward_propagation(parameters, cache, X, Y)
    
            # Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
            parameters = update_parameters(parameters, grads)
    
            ### END CODE HERE ###
    
            # Print the cost every 1000 iterations
            if print_cost and i % 1000 == 0:
                print ("Cost after iteration %i: %f" % (i, cost))
    
        return parameters
    
    

    接着,调用一下这个函数,看看效果,还不是美滋滋(调用代码如下)

    #现在我们来跑一跑这个模型
    X_assess, Y_assess = nn_model_test_case()
    
    parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=False)
    print("W1 = " + str(parameters['W1']))
    print("b1 = " + str(parameters['b1']))
    print("W2 = " + str(parameters['W2']))
    print("b2 = " + str(parameters['b2']))
    

    上面设置的隐藏层是4个,迭代次数是10000
    输出以下结果:

    W1 = [[-4.18493855  5.33220875]
     [-7.52989335  1.24306212]
     [-4.19297397  5.32630669]
     [ 7.52983568 -1.24309519]]
    b1 = [[ 2.32926551]
     [ 3.79459096]
     [ 2.33002105]
     [-3.79469147]]
    W2 = [[-6033.83673001 -6008.12981298 -6033.1009627   6008.06639333]]
    b2 = [[-52.66607002]]
    

    最后,跑一下预测函数

    #现在来写一写预测函数
    # GRADED FUNCTION: predict
    def predict(parameters, X):
        """
        Using the learned parameters, predicts a class for each example in X
    
        Arguments:
        parameters -- python dictionary containing your parameters
        X -- input data of size (n_x, m)
    
        Returns
        predictions -- vector of predictions of our model (red: 0 / blue: 1)
        """
    
        # Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.
        ### START CODE HERE ### (≈ 2 lines of code)
        A2, cache = forward_propagation(X , parameters)
        predictions = np.array([0 if i <= 0.5 else 1 for i in np.squeeze(A2)])
        ### END CODE HERE ###
    
        return predictions
    

    看看预测值吧

    #来看看预测值
    parameters, X_assess = predict_test_case()
    predictions = predict(parameters, X_assess)
    print("predictions mean = " + str(np.mean(predictions)))
    

    结果长这样:

    predictions mean = 0.666666666667
    

    最后,没有对比就没有伤害,,,来看看用这个模型训练的效果之前用单个logistic回归训练的效果的比较吧

    #现在用刚才那个用单个逻辑回归只有百分之47的例子来训练
    parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)
    # Plot the decision boundary
    plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
    plt.title("Decision Boundary for hidden layer size " + str(4))
    pylab.show()
    predictions=predict(parameters,X)
    print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%')
    #可以看到,预测准确率达到了百分之89,
    

    果然美滋滋,准确度达到了百分之九十,秒啊。上图

    Cost after iteration 0: 0.693048
    Cost after iteration 1000: 0.288083
    Cost after iteration 2000: 0.254385
    Cost after iteration 3000: 0.233864
    Cost after iteration 4000: 0.226792
    Cost after iteration 5000: 0.222644
    Cost after iteration 6000: 0.219731
    Cost after iteration 7000: 0.217504
    Cost after iteration 8000: 0.219501
    Cost after iteration 9000: 0.218620
    Accuracy: 90%
    
    训练后图片

    另外,好像当隐藏层有5个神经元的时候,效果最好噢,大家可以自己试试的。

    相关文章

      网友评论

        本文标题:吴恩达deep_learning_week3_BP神经网络

        本文链接:https://www.haomeiwen.com/subject/wwxbcftx.html