美文网首页
【行列式】9、行列式展开定理

【行列式】9、行列式展开定理

作者: 看远方的星 | 来源:发表于2021-01-23 11:13 被阅读0次
    行列式展开定理.png

    定义

    行列式按行列展开定理:
    n阶行列式D等于它的任一行(列)各元素与其对应的代数余子式乘积之和,即

    按行展开:
    D=a_{i1}A_{i1}+a_{i2}A_{i2}+ \cdots+a_{in}A_{in} \quad (i=1,2, \cdots n)
    按列展开:
    D=a_{1j}A_{1j}+a_{2j}A_{2j}+ \cdots+a_{nj}A_{nj} \quad (j=1,2, \cdots n)

    证明:

    证1
    D=\left| \begin{array}{cccc} a_{11}&0&\cdots&0 \\ a_{21}&a_{22}&\cdots&a_{2n} \\ \vdots&\vdots&\cdots&\vdots \\ a_{n1}&a_{n2}&\cdots&a_{nn} \\ \end{array} \right| =\sum (-1)^{N}a_{1j_{1}}a_{2j_{2}} \cdots a_{nj_{n}}

    =\sum_{1j_{2} \cdots j_{n}}^{} (-1)^{N}a_{11}a_{2j_{2}} \cdots a_{nj_{n}}

    =a_{11}\sum_{j_{2} \cdots j_{n}}^{} (-1)^{N}a_{2j_{2}} \cdots a_{nj_{n}}

    =a_{11}M_{11}=a_{11}A_{11}

    证2

    D=\left| \begin{array}{cccc} a_{11}&\cdots&a_{1,j-1}&a_{1j}&a_{1,1+j}&\cdots&a_{1n} \\ \vdots&\cdots&\vdots&\vdots&\vdots&\cdots&\vdots \\ a_{i-1,1}&\cdots&a_{i-1,j-1}&a_{i-1,j}&a_{i-1,j+1}&\cdots&a_{i-1,n} \\ 0&\cdots&0&a_{ij}&0&\cdots&0\\ a_{i+1,1}&\cdots&a_{i+1,j-1}&a_{i+1,j}&a_{i+1,j+1}&\cdots&a_{i+1,n} \\ \vdots&\cdots&\vdots&\vdots&\vdots&\cdots&\vdots \\ a_{n1}&\cdots&a_{n,j-1}&a_{n,j}&a_{n,n+j}&\cdots&a_{nn} \\ \end{array} \right|

    =(-1)^{i+j-2}\left| \begin{array}{cccc} a_{ij}&0&\cdots&0 \\ a_{1j}&a_{11}&\cdots&a_{1n} \\ \vdots&\vdots&\cdots&\vdots \\ a_{nj}&a_{n1}&\cdots&a_{nn} \\ \end{array} \right|

    =(-1)^{i+j-2}a_{ij}M_{ij}=a_{ij}(-1)^{i+j}M_{ij}

    =a_{ij}A_{ij}

    a_{ij}先换到第一行,再换到第一列,(-1)^{-2}为1,可忽略。

    证3
    D=\left| \begin{array}{cccc} a_{11}&a_{12}&\cdots&a_{1n} \\ \vdots& \vdots& \vdots& \vdots \\ a_{i1}&a_{i2}&\cdots&a_{in} \\ \vdots& \vdots& \vdots& \vdots \\ a_{n1}&a_{n2}&\cdots&a_{nn}\\ \end{array} \right|

    =\left| \begin{array}{cccc} a_{11}&a_{12}&\cdots&a_{1n} \\ \vdots& \vdots& \vdots& \vdots \\ a_{i1}+0+ \cdots +0&0+a_{i2}+0+ \cdots +0&\cdots&0+ \cdots +0+a_{in} \\ \vdots& \vdots& \vdots& \vdots \\ a_{n1}&a_{n2}&\cdots&a_{nn}\\ \end{array} \right|

    =\left| \begin{array}{cccc} a_{11}&a_{12}&\cdots&a_{1n} \\ \vdots& \vdots& \vdots& \vdots \\ a_{i1}&0&\cdots&0 \\ \vdots& \vdots& \vdots& \vdots \\ a_{n1}&a_{n2}&\cdots&a_{nn}\\ \end{array} \right| +=\left| \begin{array}{cccc} a_{11}&a_{12}&\cdots&a_{1n} \\ \vdots& \vdots& \vdots& \vdots \\ 0&a_{i2}&\cdots&0 \\ \vdots& \vdots& \vdots& \vdots \\ a_{n1}&a_{n2}&\cdots&a_{nn}\\ \end{array} \right|+ \cdots +=\left| \begin{array}{cccc} a_{11}&a_{12}&\cdots&a_{1n} \\ \vdots& \vdots& \vdots& \vdots \\ 0&0&\cdots&a_{in} \\ \vdots& \vdots& \vdots& \vdots \\ a_{n1}&a_{n2}&\cdots&a_{nn}\\ \end{array} \right|

    =a_{i1}A_{i1}+a_{i2}A_{i2}+ \cdots +a_{in}A_{in} \quad (i=1,2, \cdots n)

    同理证列的情形。

    例子

    1、求 D_{n}=\left| \begin{array}{cccc} x&a&a&\cdots &a \\ b&x&a&\cdots &a \\ b&b&x&\cdots &a \\ \vdots&\vdots&\vdots&\ddots&\vdots \\ b&b&b&\cdots&x\\ \end{array} \right|的值

    a=b, 则:

    D_{n}=\left| \begin{array}{cccc} a&b&\cdots&b&b \\ b&a&\cdots&b&b \\ \vdots&\vdots&\ddots&\vdots&\vdots \\ b&b&\cdots&b&a \\ \end{array} \right| =[a+(n-1)b](a-b)^{n-1}

    a\neq b,则:

    D_{n}=\left| \begin{array}{cccc} (x-a)+a&0+a&0+a&\cdots &0+a \\ b&x&a&\cdots &a \\ b&b&x&\cdots &a \\ \vdots&\vdots&\vdots&\ddots&\vdots \\ b&b&b&\cdots&x\\ \end{array} \right|

    D_{n}=\left| \begin{array}{cccc} x-a&0&0&\cdots &0 \\ b&x&a&\cdots &a \\ b&b&x&\cdots &a \\ \vdots&\vdots&\vdots&\ddots&\vdots \\ b&b&b&\cdots&x\\ \end{array} \right| +a \left| \begin{array}{cccc} 1&1&\cdots&1 \\ b&x&\cdots&a \\ \vdots&\vdots&&\vdots \\ b&b&\cdots&x \\ \end{array} \right|

    =(x-a)D_{n-1}+a \left| \begin{array}{cccc} 1&1&\cdots&1 \\ 0&x-b&\cdots&a-b \\ \vdots&\vdots&&\vdots \\ 0&0&\cdots&x-b \\ \end{array} \right|

    =(x-a)D_{n-1}+a(x-b)^{n-1}

    由于a,b的对称性,知D_{n}=(x-b)D_{n-1}+b(x-a)^{n-1}

    \begin{equation*} \end{equation*} \begin{cases} D_{n}=(x-a)D_{n-1}+a(x-b)^{n-1}\\ D_{n}=(x-b)D_{n-1}+a(x-a)^{n-1} \\ \end{cases}

    D_{n}= \frac {a(x-b)^{n}-b(x-a)^{n}} {a-b}, (a\neq b)

    2、求该行列式 D=\left| \begin{array}{cccc} &&&a_{1n} \\ &&a_{2(n-1)}&a_{2n} \\ &{\cdot^{\cdot^{\cdot}}}&&\vdots \\ a_{n1}&\cdots&a_{n(n-1)}&a_{nn} \\ \end{array} \right|的值

    =a_{1n}(-1)^{n+1} \left| \begin{array}{cccc} &&a_{2(n-1)} \\ &{\cdot^{\cdot^{\cdot}}}&\vdots \\ a_{n1}&\cdots&a_{n(n-1)} \\ \end{array} \right| _{(n-1) \times (n-1)}

    =a_{1n}(-1)^{n+1}a_{2(n-1)}(-1)^{n-1+1} \left| \begin{array}{cccc} &&a_{3(n-2)} \\ &{\cdot^{\cdot^{\cdot}}}&\vdots \\ a_{n1}&\cdots&a_{n(n-2)} \\ \end{array} \right| _{(n-2) \times (n-2)}

    =(-1)^{(n+1)+n} a_{1n}a_{2(n-1)} \left| \begin{array}{cccc} &&a_{3(n-2)} \\ &{\cdot^{\cdot^{\cdot}}}&\vdots \\ a_{n1}&\cdots&a_{n(n-2)} \\ \end{array} \right| _{(n-2) \times (n-2)}

    =\cdots

    =(-1)^{(n+1)+n+(n-1)+ \cdots +4}a_{1n}a_{2(n-1)} \cdots a_{(n-1)^{3}} \left| \begin{array}{cccc} &a_{(n-1)^{2}} \\ a_{n1}&a_{n2} \\ \end{array} \right| _{2 \times 2}

    =(-1)^{(n+1)+n+(n-1)+ \cdots +4}a_{1n}a_{2(n-1)} \cdots a_{(n-1)^{3}}(-1)a_{(n-1)2}a_{n1}

    注意:-1=(-1)^{5}=(-1)^{3+2}

    =(-1)^{(n+1)+n+(n-1)+ \cdots +4+3+2}a_{1n}a_{2(n-1)} \cdots a_{(n-1)^{3}}a_{(n-1)2}a_{n1}

    =(-1)^{2n+(n-1)+ \cdots +4+3+2+1}a_{1n}a_{2(n-1)} \cdots a_{(n-1)^{3}}a_{(n-1)2}a_{n1}

    =(-1)^{(n-1)+ \cdots +4+3+2+1}a_{1n}a_{2(n-1)} \cdots a_{(n-1)^{3}}a_{(n-1)2}a_{n1}

    =(-1)^{n(n-1)/2}a_{1n}a_{2(n-1)} \cdots a_{(n-1)^{3}}a_{(n-1)2}a_{n1}

    相关文章

      网友评论

          本文标题:【行列式】9、行列式展开定理

          本文链接:https://www.haomeiwen.com/subject/wxnhzktx.html