Leetcode算法解析1-50

作者: 铛铛铛clark | 来源:发表于2018-08-18 13:04 被阅读27次

<center>#1 Two Sum</center>

  • link
  • Description:
    • Given an array of integers, return indices of the two numbers such that they add up to a specific target.
  • Input: [2, 7, 11, 15]
  • Output: [0, 1]
  • Assumptions:
    • each input would have exactly one solution
    • you may not use the same element twice
  • Solution:
    • Two Sum 的题一般有两种解法, 一种是用hash, 一种是用两根指针。对于本题来说,用hash只需要遍历一遍数组,所以在时间复杂度上要优于两根指针,因为两个指针的方法是基于排序数组。
    • Java中提供了HashMap的实现。 Map以数组元素为Key, 以索引为Value。
    • 遍历一遍数组, 先在map中寻找是否有元素能够和当前值组成sum为target, 这个查找是O(1)的复杂度, 如果没有,就把当前值和索引作为一个键值对保存在Map中供后续查找, 保存也是O(1)的复杂度。Worst Case是遍历整个数组,也就是O(n)。
    • Code:
    # code block
    class Solution {
        public int[] twoSum(int[] nums, int target) {
            /*
             * Two Sum的题变种很多,所以第一个要关注的就是Assumption,本题是
             * 最原始的two sum, 只有一个答案, 并且同一个元素不能用两次
             *
             */
            // 校验:本题的assumption确保有至少一个解,所以该步可以省略
            if (nums == null || nums.length < 2) {
                return new int[0];
            }
            // intialize the result
            int[] result = new int[0];
            Map<Integer, Integer> map = new HashMap<>();
    
            for (int i = 0; i < nums.length; i++) {
                if (map.containsKey(target - nums[i])) {
                    result = new int[2];
                    result[0] = map.get(target - nums[i]);
                    result[1] = i;
                    return result;
                }
                map.put(nums[i], i);
            }
    
            return result;
        }
    }
    
  • Time Complexity: O(n)
  • Space Complexity: O(n)

<center>#2 Add Two Numbers</center>

  • link
  • Description:
    • You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order and each of their nodes contain a single digit. Add the two numbers and return it as a linked list.
    • You may assume the two numbers do not contain any leading zero, except the number 0 itself.
  • Input:
  • Output:
  • Assumptions:
    • two numbers do not contain any leading zero, except the number 0 itself.
  • Solution:
    • 注意点:
      • 使用dummy node
      • 处理到所有case:
        • l1 或 l2 位 null
        • l1 l2长度相等
        • l1 长于 l2
        • l2 长于 l1
        • 答案需要进位
  • Code:
    # code block
    public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
        if (l1 == null) {
            return l2;
        }
        if (l2 == null) {
            return l1;
        }
        int carrier = 0;
        ListNode dummy = new ListNode(0);
        ListNode curr = dummy;
        while (l1 != null && l2 != null) {
            int val = l1.val + l2.val + carrier;
            curr.next = new ListNode(val % 10);
            curr = curr.next;
            carrier = val / 10;
            l1 = l1.next;
            l2 = l2.next;
        }
        while (l1 != null) {
            int val = l1.val + carrier;
            curr.next = new ListNode(val % 10);
            curr = curr.next;
            carrier = val / 10;
            l1 = l1.next;
        }
        while (l2 != null) {
            int val = l2.val + carrier;
            curr.next = new ListNode(val % 10);
            curr = curr.next;
            carrier = val / 10;
            l2 = l2.next;
        }
        if (carrier != 0) {
            curr.next = new ListNode(carrier);
        }
        return dummy.next;
    }
    
  • Time Complexity: O(max(m, n))
  • Space Complexity: O(1)

<center>#3 Longest Substring Without Repeating Characters</center>

  • link
  • Description:
    • Given a string, find the length of the longest substring without repeating characters.
  • Input: "abcabcbb"
  • Output: 3
  • Solution:
    • 典型的同向型两根指针问题的区间类问题。
    • 维持一个符合条件的区间,每次更新最大值
  • Code:
    # code block
    public int lengthOfLongestSubstring(String s) {
        if (s == null || s.length() == 0) {
            return 0;
        }
        boolean[] hash = new boolean[256];
        char[] sc = s.toCharArray();
        int result = 0;
        int left = 0, right = 0;
        while (right < sc.length) {
            while (right < sc.length && hash[sc[right]] == false) {
                hash[sc[right]] = true;
                right++;
            }
            result = Math.max(result, right - left);
            hash[sc[left]] = false;
            left++;
        }
        return result;
    }
    
  • Time Complexity: O(n)
  • Space Complexity: O(1)

<center>#4 Median of Two Sorted Arrays</center>

  • link
  • Description:
    • There are two sorted arrays nums1 and nums2 of size m and n respectively.
    • Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
  • Input: nums1 = [1, 2] nums2 = [3, 4]
  • Output:2.5
  • Assumptions:
    • At least one of this two arrays has more than 0 element.
  • Solution:
    • 要求时间复杂度为O(log (m+n)), 这题可以由时间复杂度倒推方法
    • 满足O(log n)时间复杂度的算法第一个想到的是二分,又是排序数组,更加确定是二分
    • 求第k个数,每次把问题缩小到排除不可能的k / 2 个数
    • 对两个数组同时找到第k / 2 个数,如果第一个数组中的数小于第二个数组中的数,那么第一个数组中必然不存在第k大的数,可以排除前k / 2 的数,反之同理
    • 递归执行,注意递归的出口和corner case
  • Code:
    # code block
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        if (nums1 == null) {
            // prevent null exception
            nums1 = new int[0];
        }
        if (nums2 == null) {
            nums2 = new int[0];
        }
        int m = nums1.length;
        int n = nums2.length;
        // 1-based index
        int k = (m + n + 1) / 2;
        int median1 = findK(nums1, nums2, 0, 0, k);
        if ((m + n) % 2 == 1) {
            // total number is odd
            return (double)median1;
        }
        int median2 = findK(nums1, nums2, 0, 0, k + 1);
        // Remind of the conversion from int to double
        return (median1 + median2) / 2.0;
    }
    
    private int findK(int[] nums1, int[] nums2, int start1, int start2, int k) {
        int m = nums1.length, n = nums2.length;
        if (start1 >= m) {
            return nums2[start2 + k - 1];
        }
        if (start2 >= n) {
            return nums1[start1 + k - 1];
        }
        if (k == 1) {
            return Math.min(nums1[start1], nums2[start2]);
        }
        int mid = k / 2;
         // make sure never drop the val1 when start1 + mid - 1 >= m
        int val1 = (start1 + mid - 1 < m) ? nums1[start1 + mid - 1] : Integer.MAX_VALUE;
        int val2 = (start2 + mid - 1 < n) ? nums2[start2 + mid - 1] : Integer.MAX_VALUE;
        if (val1 < val2) {
            // drop amount of mid number in nums1
            return findK(nums1, nums2, start1 + mid, start2, k - mid);
        } else {
            return findK(nums1, nums2, start1, start2 + mid, k - mid);
        }
    }
    
  • Time Complexity: O(log (m+n))
  • Space Complexity: O(1)

<center>#5 Longest Palindromic Substring</center>

  • link
  • Description:
    • Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.
  • Input: "babad"
  • Output: "bab" or "aba"
  • Solution:
    • 求最长子回文串,brute force的解法是三重循环,一重确定起点,一重确定终点,一重验证是否为回文串。复杂度为O(n^3)
    • 这边想到的优化是如果我以一个点为中点,来找以这个点为中点的最长回文串
    • 这样一重循环确定中点,一重循环找最长回文串,时间复杂度就降到O(n^2)
    • 注意点是回文串要考虑到奇数长度和偶数长度两种特殊情形
  • Code:
    # code block
    public String longestPalindrome(String s) {
        if (s == null || s.length() < 2) {
            return s;
        }
        for (int i = 0; i < s.length(); i++) {
            updateLongest(s, i, i);
            if (i != s.length() - 1 && s.charAt(i) == s.charAt(i + 1)) {
                updateLongest(s, i, i + 1);
            }
        }
        return s.substring(start, end + 1);
    }
    
    private void updateLongest(String s, int l, int r) {
        while (l >= 0 && r < s.length()) {
            if (s.charAt(l) != s.charAt(r)) {
                break;
            }
            if (r - l > end - start) {
                start = l;
                end = r;
            }
            l--;
            r++;
        }
    }
    
    private int start = 0;
    private int end = 0;
    
  • Time Complexity: O(n ^ 2)
  • Space Complexity: O(1)

<center>#6 ZigZag Conversion</center>

  • link
  • Description:
    • The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility)
  • Input: "PAYPALISHIRING", 3
  • Output: "PAHNAPLSIIGYIR"
  • Solution:
    • 借用网上摘来的图表达题意
    • [图片上传失败...(image-eb60d7-1534568626309)]
    • 这是一道模拟题,可以找到规律是以2 * numRows - 2 在循环
    • corner case: numRos = 1 时就是原字符串
  • Code:
    # code block
    public String convert(String s, int numRows) {
        if (s == null || s.length() <= numRows || numRows <= 1) {
            return s;
        }
        int sep = numRows * 2 - 2;
        char[] sc = s.toCharArray();
        StringBuilder[] sb = new StringBuilder[numRows];
        for (int i = 0; i < sb.length; i++) {
            sb[i] = new StringBuilder();
        }
        for (int i = 0; i < sc.length; i++) {
            int idx = i % sep;
            if (idx < numRows) {
                sb[idx].append(sc[i]);
            } else {
                sb[sep - idx].append(sc[i]);
            }
        }
        StringBuilder result = new StringBuilder();
        for (int i = 0; i < sb.length; i++) {
            result.append(sb[i]);
        }
        return result.toString();
    }
    
  • Time Complexity: O(n)
  • Space Complexity: O(n)

<center>#7 Reverse Integer</center>

  • link
  • Description: Reverse Integer
    • Reverse digits of an integer.
  • Input: 123
  • Output: 321
  • Assumptions:
    • return 0 when the reversed integer overflows.
  • Solution:
    • 注意点:
      • 检查overflow,注释位置为详细解法
      • 注意java负数取余为负数
  • Code:
    # code block
    public int reverse(int x) {
        boolean isPos = (x >= 0) ? true : false;
        int result = 0;
        while (x / 10 != 0 || x % 10 != 0) {
            int val = result * 10 + Math.abs(x % 10);
            // check overflow
            if (val / 10 != result) {
                return 0;
            }
            result = val;
            x /= 10;
        }
        return isPos? result : -result;
    }
    
  • Time Complexity: O(number of digits)
  • Space Complexity: O()

<center>#8 String to Integer (atoi)</center>

  • link
  • Description:
    • Implement atoi to convert a string to an integer.
    • Hint: Carefully consider all possible input cases. If you want a challenge, please do not see below and ask yourself what are the possible input cases.
    • Notes: It is intended for this problem to be specified vaguely (ie, no given input specs). You are responsible to gather all the input requirements up front.
  • Input: " -0012a42"
  • Output: -12
  • Solution:
    • 注意考虑所有Corner Case:
      • null
      • empty string
      • positive or negative
      • start with space
      • overflow (max and min are different)
    • 方法二:转换成long型来判断
  • Code:
    # code block
    public int myAtoi(String str) {
        if (str == null) {
            // prevent null exception
            return 0;
        }
        str = str.trim();
        if (str.length() == 0) {
            // emtpy string
            return 0;
        }
        int result = 0;
        boolean isPos = true;
        char[] sc = str.toCharArray();
        int i = 0;
        // postive or negative
        if (Character.isDigit(sc[0])) {
            isPos = true;
        } else if (sc[0] == '+') {
            isPos = true;
            i = 1;
        } else if (sc[0] == '-') {
            isPos = false;
            i = 1;
        } else {
            return 0;
        }
        for (; i < sc.length; i++) {
            if (!Character.isDigit(sc[i])) {
                // invalid string
                return result;
            }
            if (isPos) {
                int val = result * 10 + sc[i] - '0';
                if (val / 10 != result) {
                    // check overflow
                    return Integer.MAX_VALUE;
                }
                result = val;
            } else {
                int val = result * 10 + '0' - sc[i];
                if (val / 10 != result) {
                    return Integer.MIN_VALUE;
                }
                result = val;
            }
        }
        return result;
    }
    
  • Time Complexity: O(n)
  • Space Complexity: O(n)

<center>#9 Palindrome Number</center>

  • link
  • Description:
    • Determine whether an integer is a palindrome. Do this without extra space.
  • Input: 121
  • Output: true
  • Solution:
    • 注意点:
      • 负数肯定不是
      • 注意溢出
  • Code:
    # code block
    public boolean isPalindrome(int x) {
        if (x < 0) {
            return false;
        }
        long org = x;
        long reverse = 0;
        while (x / 10 != 0 || x % 10 != 0) {
            reverse = reverse * 10 + x % 10;
            x /= 10;
        }
        return reverse == org;
    }
    
  • Time Complexity: O(lg n)
  • Space Complexity: O(1)

<center>#11 Container With Most Water</center>

  • link
  • Description:
    • Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
  • Input: [1,2,1]
  • Output: 2
  • Assumptions:
    • You may not slant the container and n is at least 2.
  • Solution:
    • 典型的相向型两根指针问题。面积等于底乘高。当两根指针相向, 底只会越来越小,所以只需要找到更高的高与当前最大值比较即可。
    • 两根线和x轴组成容器,选取短板做高,所以每次更新短板,就能更新高度。
  • Code:
    # code block
    public int maxArea(int[] height) {
        if (height == null || height.length <= 1) {
            return 0;
        }
        int max = 0;
        int left = 0, right = height.length - 1;
        while (left < right) {
            max = Math.max(max, Math.min(height[left], height[right]) * (right - left));
            if (height[left] < height[right]) {
                left++;
            } else {
                right--;
            }
        }
        return max;
    }
    
  • Time Complexity: O(n)
  • Space Complexity: O(1)

<center>#12 Integer to Roman</center>

  • link
  • Description:
    • Given an integer, convert it to a roman numeral.
  • Input: 456
  • Output: "CDLVI"
  • Assumptions:
    • Input is guaranteed to be within the range from 1 to 3999.
  • Solution:
    • 模拟题,要想知道罗马数字的具体规则参考wikipedia
  • Code:
    # code block
    class Solution {
        public static final int[] number = {1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1};
        public static final String[] symbol = {"M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"};
        public String intToRoman(int num) {
            StringBuilder sb = new StringBuilder();
            int i = 0;
            while (num != 0) {
                int times = num / number[i];
                if (times != 0) {
                    for (int j = 0; j < times; j++) {
                        sb.append(symbol[i]);
                    }
                    num = num % number[i];
                }
                i++;
            }
            return sb.toString();
        }
    }
    

<center>#13 Roman to Integer</center>

  • link
  • Description:
    • Given a roman numeral, convert it to an integer.
  • Input: "CDLVI"
  • Output: 456
  • Assumptions:
    • Input is guaranteed to be within the range from 1 to 3999.
  • Solution:
    • 模拟题,要想知道罗马数字的具体规则参考wikipedia
  • Code:
    # code block
    class Solution {
        public static final int[] number = {1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1};
        public static final String[] symbol = {"M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"};
        public int romanToInt(String s) {
            int result = 0;
            if (s == null || s.length() == 0) {
                return result;
            }
            StringBuilder sb = new StringBuilder(s);
            int i = 0;
            while (sb.length() > 0 && i < number.length) {
                String curr = symbol[i];
                while (sb.length() >= curr.length() && sb.substring(0, curr.length()).equals(curr)) {
                    result += number[i];
                    sb.delete(0, curr.length());
                }
                i++;
            }
            return result;
        }
    }
    

<center>#14 Longest Common Prefix</center>

  • link
  • Description:
    • Write a function to find the longest common prefix string amongst an array of strings.
  • Input:["aasdfgas", "aaasafda"]
  • Output:"aa"
  • Solution:
    • 多种解法
    • 最巧妙地是排序之后比较首尾
    • 二分也可以通过测试
  • Code:
    # code block
    public String longestCommonPrefix(String[] strs) {
        StringBuilder result = new StringBuilder();
    
        if (strs!= null && strs.length > 0){
    
            Arrays.sort(strs);
    
            char [] a = strs[0].toCharArray();
            char [] b = strs[strs.length-1].toCharArray();
    
            for (int i = 0; i < a.length; i ++){
                if (b.length > i && b[i] == a[i]){
                    result.append(b[i]);
                }
                else {
                    return result.toString();
                }
            }
        return result.toString();
    }
    
  • Time Complexity: O(n lg n)
    • Code:
    # code block
    class Solution {
        public String longestCommonPrefix(String[] strs) {
            if (strs == null || strs.length == 0) {
                return "";
            }
            int start = 0;
            int end = Integer.MAX_VALUE;
            for (String str : strs) {
                end = Math.min(end, str.length());
            }
            end--;
            while (start < end - 1) {
                int mid = start + (end - start) / 2;
                if (checkValid(mid, strs)) {
                    start = mid;
                } else {
                    end = mid;
                }
            }
    
            if (checkValid(end, strs)) {
                return strs[0].substring(0, end + 1);
            }
            if (checkValid(start, strs)) {
                return strs[0].substring(0, start + 1);
            }
            return "";
        }
    
        private boolean checkValid(int n, String[] strs) {
            String tmp = strs[0].substring(0, n + 1);
            for(int i = 1; i < strs.length; i++) {
                if (!strs[i].substring(0, n + 1).equals(tmp)) {
                    return false;
                }
            }
            return true;
        }
    }
    

<center>#15 3Sum</center>

  • link
  • Description:
    • Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
  • Input: [-1, 0, 1, 2, -1, -4]
  • Output: [[-1, 0, 1], [-1, -1, 2]]
  • Assumptions:
    • The solution set must not contain duplicate triplets
  • Solution:
    • Two sum 变种。可以简化为固定一个值,在剩下的值中寻找two sum。难点在于去重,去重即联想到排序!所以先把数组排序。if (i != 0 && nums[i] == nums[i - 1]) 就continue这种方法确保了每个数字只取第一个。在two sum中两个while循环确保相同的组合只出现一次。
  • Code:
    # code block
    public List<List<Integer>> threeSum(int[] nums) {
         /*
          * 2 Sum的变种, 可以简化为确定一个数a, 在剩下的数中的2 Sum为target - a
          * 难点,去重
          */
         // Initialize the result
         List<List<Integer>> result = new ArrayList<>();
         // Boundary case
         if (nums == null || nums.length < 3) {
             return result;
         }
         // The two pointer solution for two sum is based on sorted array
         Arrays.sort(nums);
         for (int i = 0; i < nums.length - 2; i++) {
             // remove duplicates
             if (i != 0 && nums[i] == nums[i - 1]) {
                 continue;
             }
             int left = i + 1, right = nums.length - 1;
             while (left < right) {
                 int val = nums[i] + nums[left] + nums[right];
                 if (val == 0) {
                     // find one solution
                     List<Integer> solution = new ArrayList<>();
                     solution.add(nums[i]);
                     solution.add(nums[left]);
                     solution.add(nums[right]);
                     result.add(solution);
                     left++;
                     right--;
                     // remove duplicates
                     while (left < right && nums[left] == nums[left - 1]) {
                         left++;
                     }
                     while (left < right && nums[right] == nums[right + 1]) {
                         right--;
                     }
                 } else if (val > 0) {
                     // drop the right
                     right--;
                 } else {
                     // drop the left
                     left++;
                 }
             }
         }
         return result;
     }
    
    
  • Time Complexity: O(n ^ 2)
  • Space Complexity: O(1)

<center>#16 3Sum Closest</center>

  • link

  • Description:

    • Given an array S of n integers, find three integers in S such that the sum is closest to a given number, target. Return the sum of the three integers. You may assume that each input would have exactly one solution.
  • Input: [2, 7, 11, 15]

  • Output: [0, 1]

  • Assumptions:

    • assume that each input would have exactly one solution.
  • Solution:

    • 3Sum的变种, 保存一个与target的差值, 每次作比较,小于这个差值即更新答案。
      • 注意点:
      • 三个int相加使用long防止溢出
  • Code:

    # code block
    public int threeSumClosest(int[] nums, int target) {
         Arrays.sort(nums);
         long diff = (long)Integer.MAX_VALUE * 2;
         int result = 0;
        // 3 Sum template
         for (int i = 0; i < nums.length - 2; i++) {
             int left = i + 1, right = nums.length - 1;
             while (left < right) {
                 long val = nums[i] + nums[left] + nums[right];
                 if (Math.abs(val - target) < Math.abs(diff)) {
                     diff = val - target;
                     result = (int)val;
                 }
           // when val == target, it must be the answer
                 if (val == target) {
                     return target;
                 } else if (val > target) {
                     right--;
                 } else {
                     left++;
                 }
             }
         }
         return result;
     }
    
    
  • Time Complexity: O(n ^ 2)

  • Space Complexity: O(n)

<center>#17 Letter Combinations of a Phone Number</center>

  • link
  • Description:
    • Given a digit string, return all possible letter combinations that the number could represent.
    • A mapping of digit to letters (just like on the telephone buttons) is given below.
    • avator
  • Input: Digit string "23"
  • Output: ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]
  • Assumptions:
    • The digits are between 2 and 9
  • Solution:
    • 求组合的题,在隐式图上做DFS
    • 注意点:
      • 没有明显的回溯痕迹是因为String是immutable的类,每次修改都会形成一个新的对象
  • Code:
    # code block
    class Solution {
        public List<String> letterCombinations(String digits) {
            List<String> result = new ArrayList<>();
            if (digits == null || digits.length() == 0) {
                return result;
            }
            char[] dc = digits.toCharArray();
            dfsHelper(dc, 0, "", result);
            return result;
        }
    
        private void dfsHelper(char[] dc, int start, String curr, List<String> result) {
            if (start == dc.length) {
                result.add(curr);
                return;
            }
            char[] letters = pad[dc[start] - '0'].toCharArray();
            for (char letter : letters) {
                dfsHelper(dc, start + 1, curr + letter, result);
            }
        }
    
        public static final String[] pad = {"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};
    }
    

<center>#18 4Sum</center>

  • link
  • Description:
    • Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
  • Input: [1, 0, -1, 0, -2, 2]
  • Output: [[-1, 0, 0, 1], [-2, -1, 1, 2], [-2, 0, 0, 2]]
  • Assumptions:
    • solution set must not contain duplicate quadruplets.
  • Solution:
    • Two sum 变种。固定两个值,在剩下的值中做two sum,注意点和3Sum一样还是排序和去重。
  • Code:
    # code block
    public List<List<Integer>> fourSum(int[] nums, int target) {
          List<List<Integer>> result = new ArrayList<>();
          if (nums == null || nums.length < 4) {
              return result;
          }
          Arrays.sort(nums);
          for (int i = 0; i < nums.length - 3; i++) {
              if (i != 0 && nums[i] == nums[i - 1]) {
                  continue;
              }
              for (int j = i + 1; j < nums.length - 2; j++) {
                  if (j != i + 1 && nums[j] == nums[j - 1]) {
                      continue;
                  }
                  twoSum(nums, j + 1, target, nums[i], nums[j], result);
              }
          }
          return result;
      }
    
      private void twoSum(int[] nums, int left, int target, int v1, int v2, List<List<Integer>> result) {
          int right = nums.length - 1;
          while (left < right) {
              long val = v1 + v2 + nums[left] + nums[right];
              if (val == target) {
                  List<Integer> solution = new ArrayList<>();
                  solution.add(v1);
                  solution.add(v2);
                  solution.add(nums[left]);
                  solution.add(nums[right]);
                  result.add(solution);
                  left++;
                  right--;
                  while (left < right && nums[left] == nums[left - 1]) {
                      left++;
                  }
                  while (left < right && nums[right] == nums[right + 1]) {
                      right--;
                  }
              } else if (val > target) {
                  right--;
              } else {
                  left++;
              }
          }
      }
    
    
  • Time Complexity: O(n ^ 3)
  • Space Complexity: O(1)

<center>#19 Remove Nth Node From End of List</center>

  • link
  • Description:
    • Given a linked list, remove the nth node from the end of list and return its head.
  • Input: 1->2->3->4->5 n = 2
  • Output: 1->2->3->5
  • Assumptions:
    • Given n will always be valid.
    • Try to do this in one pass.
  • Solution:
    • 使用dummynode因为可能要删除第一个元素
    • 使用两根指针保持距离即可
  • Code:
    # code block
    public ListNode removeNthFromEnd(ListNode head, int n) {
        ListNode dummy = new ListNode(0);
        ListNode slow = dummy;
        ListNode fast = dummy;
        dummy.next = head;
        for (int i = 0; i < n; i++) {
            if (fast == null) {
                return head;
            }
            fast = fast.next;
        }
        while (fast.next != null) {
            fast = fast.next;
            slow = slow.next;
        }
        slow.next = slow.next.next;
        return dummy.next;
    }
    
  • Time Complexity: O(n)
  • Space Complexity: O(1)

<center>#20 Valid Parentheses</center>

  • link
  • Description:
    • Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the input string is valid.
    • The brackets must close in the correct order, "()" and "()[]{}" are all valid but "(]" and "([)]" are not.
  • Input: "()[]{}"
  • Output: true
  • Solution:
    • 模拟题,用栈来做最适合,注意corner case
  • Code:
    # code block
    public boolean isValid(String s) {
        if (s == null || s.length() == 0) {
            return true;
        }
        char[] sc = s.toCharArray();
        Stack<Character> stack = new Stack<>();
        for (char c : sc) {
            if (c == '(' || c == '[' || c == '{') {
                stack.push(c);
            } else {
                if (stack.isEmpty()) {
                    return false;
                }
                if (c == ')' && stack.peek() != '(') {
                    return false;
                }
                if (c == ']' && stack.peek() != '[') {
                    return false;
                }
                if (c == '}' && stack.peek() != '{') {
                    return false;
                }
                stack.pop();
            }
        }
        return stack.isEmpty();
    }
    
  • Time Complexity: O(n)
  • Space Complexity: O(n)

<center>#21 Merge Two Sorted Lists</center>

  • link
  • Description:
    • Merge two sorted linked lists and return it as a new list. The new list should be made by splicing together the nodes of the first two lists.
  • Input: 1->3->5->null 2->4->6->7->null
  • Output:1->2->3->4->5->6->7->null
  • Solution:
    • 归并排序
    • 注意所有corner case
  • Code:
    # code block
    public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
        if (l1 == null) {
            return l2;
        }
        if (l2 == null) {
            return l1;
        }
        ListNode dummy = new ListNode(0);
        ListNode curr = dummy;
        while (l1 != null && l2 != null) {
            ListNode tmp = null;
            if (l1.val < l2.val) {
                tmp = l1;
                l1 = l1.next;
                tmp.next = null;
            } else {
                tmp = l2;
                l2 = l2.next;
                tmp.next = null;
            }
            curr.next = tmp;
            curr = curr.next;
        }
        if (l1 != null) {
            curr.next = l1;
        }
        if (l2 != null) {
            curr.next = l2;
        }
        return dummy.next;
    }
    
  • Time Complexity: O(m + n)
  • Space Complexity: O(1)

<center>#22 Generate Parentheses</center>

  • link
  • Description:
    • Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.
  • Input: 3
  • Output: ["((()))", "(()())", "(())()", "()(())", "()()()"]
  • Solution:
    • 排列题,用隐式图DFS遍历
    • String 是immutable类,不用特意回溯
    • 剪枝: 当左边括号和右边括号数量相等时,可以省去加右边括号的搜索
  • Code:
    # code block
    public List<String> generateParenthesis(int n) {
        List<String> result = new ArrayList<>();
        if (n < 0) {
            return result;
        }
        dfsHelper(0, 0, n, "", result);
        return result;
    }
    
    private void dfsHelper(int left, int right, int n, String state, List<String> result) {
        if (left == n && right == n) {
            result.add(state);
        }
        if (left < n) {
            dfsHelper(left + 1, right, n, state + "(", result);
        }
        // 剪枝
        if (right < left) {
            dfsHelper(left, right + 1, n, state + ")", result);
        }
    }
    

<center>#23 Merge k Sorted Lists</center>

  • link
  • Description:
    • Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.
  • Input: [[1,2],[3,6],[4,5]];
  • Output:[1,2,3,4,5,6]
  • Solution:
    • 归并k个list,往归并排序的方向去想
    • 归并排序两个list中去小的那一个的值,k个list就是取k个list中最小的那个值
    • 联想到heap, java中有heap的不完全实现priorityqueue
    • 要学会写java中的comparator
  • Code:
    # code block
    public ListNode mergeKLists(ListNode[] lists) {
        if (lists == null || lists.length == 0) {
            return null;
        }
        ListNode dummy = new ListNode(0);
        ListNode curr = dummy;
        Queue<ListNode> pq = new PriorityQueue<>(lists.length + 1, new Comparator<ListNode>() {
            @Override
            public int compare(ListNode a, ListNode b) {
                return a.val - b.val;
            }
        });
        for (ListNode node : lists) {
            if (node != null) {
                pq.offer(node);
            }
        }
        while (!pq.isEmpty()) {
            ListNode min = pq.poll();
            if (min.next != null) {
                pq.offer(min.next);
            }
            curr.next = min;
            curr = curr.next;
        }
        return dummy.next;
    }
    
  • Time Complexity: O(n lg k)
  • Space Complexity: O(1)

<center>#24 Swap Nodes in Pairs</center>

  • link
  • Description:
    • Given a linked list, swap every two adjacent nodes and return its head.
  • Input: 1->2->3->4
  • Output: 2->1->4->3
  • Assumptions:
    • Your algorithm should use only constant space.
    • You may not modify the values in the list, only nodes itself can be changed.
  • Solution:
    • 链表reverse题,注意哪些指针要改变,注意子函数该返回什么,注意空链表处理
  • Code:
    # code block
    public ListNode swapPairs(ListNode head) {
        if (head == null || head.next == null) {
            return head;
        }
        ListNode dummy = new ListNode(0);
        dummy.next = head;
        ListNode prev = dummy;
        while ((prev = swap(prev)) != null);
        return dummy.next;
    }
    
    // prev->n1->n2->next
    // prev->n2->n1->next;
    // return n1 if swap, else return null
    private ListNode swap(ListNode prev) {
        if (prev.next == null || prev.next.next == null) {
            // No swap needed
            return null;
        }
        ListNode n1 = prev.next;
        ListNode n2 = n1.next;
        ListNode next = n2.next;
        prev.next = n2;
        n2.next = n1;
        n1.next = next;
        return n1;
    }
    
  • Time Complexity: O(n)
  • Space Complexity: O(1)

<center>#25 Reverse Nodes in k-Group</center>

  • link
  • Description:
    • Given a linked list, reverse the nodes of a linked list k at a time and return its modified list.
    • k is a positive integer and is less than or equal to the length of the linked list. If the number of nodes is not a multiple of k then left-out nodes in the end should remain as it is.
    • You may not alter the values in the nodes, only nodes itself may be changed.
    • Only constant memory is allowed.
  • Input: 1->2->3->4->5 k = 2
  • Output: 2->1->4->3->5
  • Solution:
    • 翻转时注意判断是否需要翻转,哪些指针需要被改变,返回什么节点
  • Code:
    # code block
    public ListNode reverseKGroup(ListNode head, int k) {
        if (k == 1) {
            return head;
        }
        ListNode dummy = new ListNode(0);
        dummy.next = head;
        ListNode prev = dummy;
        while ((prev = reverseK(prev, k)) != null);
        return dummy.next;
    }
    
    // prev->n1->n2->n3...->nk->next
    // prev->nk->nk-1->...->n1->next;
    // return n1
    private ListNode reverseK(ListNode prev, int k) {
        ListNode nk = prev;
        for (int i = 0; i < k; i++) {
            nk = nk.next;
            if (nk == null) {
                return null;
            }
        }
        ListNode n1 = prev.next;
        ListNode nkPlus = nk.next;
        ListNode left = prev;
        ListNode right = prev.next;
        while (right != nkPlus) {
            ListNode tmp = right.next;
            right.next = left;
            left = right;
            right = tmp;
        }
        prev.next = nk;
        n1.next = nkPlus;
        return n1;
    }
    
  • Time Complexity: O(n)
  • Space Complexity: O(1)

<center>#26 Remove Duplicate</center>

  • link
  • Description:
    • Given a sorted array, remove the duplicates in place such that each element appear only once and return the new length
    • Do not allocate extra space for another array, you must do this in place with constant memory.
  • Input: [1,1,2]
  • Output: 2
  • Assumptions:
    • Do not allocate extra space for another array, you must do this in place with constant memory.
  • Solution:
    • 考的就是最基本的去重, 关键在于注释了remove the duplicate的那个if判断
  • Code:
    # code block
    public int removeDuplicates(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        int idx = 0;
        for (int i = 0; i < nums.length; i++) {
    // remove the duplicate
            if (i != 0 && nums[i] == nums[i - 1]) {
                continue;
            }
            nums[idx] = nums[i];
            idx++;
        }
        return idx;
    }
    
    
  • Time Complexity: O(n)
  • Space Complexity: O(1)

<center>#27 Remove Element</center>

  • link
  • Description:
    • Given an array and a value, remove all instances of that value in place and return the new length.
    • Do not allocate extra space for another array, you must do this in place with constant memory.
    • The order of elements can be changed. It doesn't matter what you leave beyond the new length.
  • Input: [3,2,2,3]
  • Output: 2
  • Assumptions:
    • Do not allocate extra space for another array, you must do this in place with constant memory.
  • Solution:
    • 考的就是最基本的数组in-place去除元素, 关键在于注释了remove the duplicate的那个if判断
  • Code:
    # code block
    public int removeElement(int[] nums, int val) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        int idx = 0;
        for (int i = 0; i < nums.length; i++) {
    // remove duplicates
            if (nums[i] == val) {
                continue;
            }
            nums[idx++] = nums[i];
        }
        return idx;
    }
    
    
  • Time Complexity: O(n)
  • Space Complexity: O(1)

<center>#28 Implement strStr()</center>

  • link
  • Description:
    • Implement strStr().
    • Returns the index of the first occurrence of needle in haystack, or -1 if needle is not part of haystack.
  • Input: "asdf" "sd"
  • Output: 1
  • Assumptions:
    • 有个更优的算法叫KMP算法,此处不做介绍,有兴趣研究可以谷歌或百度
  • Solution:
    • 简单的两重循环,注意corner case
  • Code:
    # code block
    public int strStr(String haystack, String needle) {
        if (haystack == null || needle == null) {
            return -1;
        }
        if (needle.length() == 0) {
            return 0;
        }
        if (haystack.length() == 0) {
            return -1;
        }
        for (int i = 0; i < haystack.length() - needle.length() + 1; i++) {
            boolean flag = true;
            for (int j = 0; j < needle.length() && j + i < haystack.length(); j++) {
                if (needle.charAt(j) != haystack.charAt(j + i)) {
                    flag = false;
                    break;
                }
            }
            if (flag) {
                return i;
            }
        }
        return -1;
    }
    
  • Time Complexity: O(n ^ 2)
  • Space Complexity: O(1)

<center>#29 Divide Two Integers</center>

  • link
  • Description:
    • Divide two integers without using multiplication, division and mod operator.
    • If it is overflow, return MAX_INT.
  • Input: 123121 67
  • Output: 1837
  • Solution:
    • 求商不能使用除,余还有乘操作,那么思路一般就是使用位运算
    • brute force的方法是累加divisor绝对值直到大于dividend
    • 但是使用位运算,左移一位就是两倍,这题可以用对divisor移位来简化复杂度,从n的数量级到lg n
    • 这题的难点在于对每一个细节的处理,正负,溢出等等,包括考到正负数最大值的绝对值差1
  • Code:
    # code block
    public int divide(int dividend, int divisor) {
        if (divisor == 0) {
            return Integer.MAX_VALUE;
        }
        boolean isPos = true;
        if ((dividend < 0 && divisor > 0) || (dividend > 0 && divisor < 0)) {
            isPos = false;
        }
        long dividendL = Math.abs((long)dividend);
        long divisorL = Math.abs((long)divisor);
        if (dividendL < divisorL) {
            return 0;
        }
        long factor = 1;
        long cmp = divisorL;
        long result = 0;
        while ((cmp << 1) <= dividendL) {
            cmp <<= 1;
            factor <<= 1;
        }
        while (factor > 0 && dividendL > 0) {
            if (dividendL >= cmp) {
                result += factor;
                dividendL -= cmp;
            }
            factor >>= 1;
            cmp >>= 1;
        }
        if (isPos) {
            return (result < Integer.MAX_VALUE) ? (int)result : Integer.MAX_VALUE;
        } else {
            return (-result > Integer.MIN_VALUE) ? (int)-result : Integer.MIN_VALUE;
        }
    }
    
  • Time Complexity: O(lg n)
  • Space Complexity: O(1)

<center>#31 Next Permutation</center>

  • link
  • Description:
    • Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers.
    • If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order).
    • The replacement must be in-place, do not allocate extra memory.
  • Input: 1,2,3
  • Output: 1,3,2
  • Solution:
    • permutation中比较难的题, 这题先将排列的树画出来,找规律
    • A_NEXT一定与A有尽可能长的公共前缀。
    • 如果元素从底向上一直处于递增,说明是对这些元素来说,是没有下一个排列的
    • 从后向前比较相邻的两个元素,直到前一个元素小于后一个元素,停止,这样确保A_NEXT 与A有最长的公共前缀
    • 下一步是找交换的点,必然是找从底部开始第一个大于停止的那个元素进行交换,能确保最小
    • 如果从低到根都是递增,那么下一个元素就是reverse整个数组
    • 文字解释有些难以理解,实际情况用实例将全排列的树画出来就能理解
  • Code:
    # code block
    public void nextPermutation(int[] nums) {
        if (nums == null || nums.length == 0) {
            return;
        }
        for (int i = nums.length - 2; i >= 0; i--) {
            if (nums[i] >= nums[i + 1]) {
                continue;
            }
            for (int j = nums.length - 1; j > i; j--) {
                if (nums[j] > nums[i]) {
                    swap(nums, i, j);
                    reverse(nums, i + 1, nums.length - 1);
                    return;
                }
            }
        }
        reverse(nums, 0, nums.length - 1);
    }
    
    private void swap(int[] nums, int i, int j) {
        int tmp = nums[i];
        nums[i] = nums[j];
        nums[j] = tmp;
    }
    
    private void reverse(int[] nums, int start, int end) {
        while (start < end) {
            swap(nums, start, end);
            start++;
            end--;
        }
    }
    
  • Time Complexity: O(n)
    • 看似是两重循环嵌套一个reverse,实际上第一个循环找到要交换的第一个点,第二重循环找到要交换的第二个点,对两点间进行reverse,实际是三个O(n)的操作
  • Space Complexity: O(1)

<center>#33 Search in Rotated Sorted Array</center>

  • link
  • Description:
    • Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
    • (i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).
    • You are given a target value to search. If found in the array return its index, otherwise return -1.
  • Input: 4 5 6 7 0 1 2, 5
  • Output: 2
  • Assumptions:
    • You may assume no duplicate exists in the array.
  • Solution:
    • 排序非重复rotated数组,满足二分条件
    • 本题难点在于分情况讨论
  • Code:
    # code block
    public int search(int[] nums, int target) {
        if (nums == null || nums.length == 0) {
            return -1;
        }
        int start = 0, end = nums.length - 1;
        while (start < end - 1) {
            int mid = start + (end - start) / 2;
            if (nums[mid] == target) {
                return mid;
            }
            if (nums[start] < nums[end]) {
                // mono increasing
                if (nums[mid] < target) {
                    start = mid;
                } else {
                    end = mid;
                }
            } else if (nums[mid] <= nums[end]) {
                if (nums[mid] < target && nums[end] >= target) {
                    start = mid;
                } else {
                    end = mid;
                }
            } else {
                if (nums[mid] > target && nums[start] <= target) {
                    end = mid;
                } else {
                    start = mid;
                }
            }
        }
        if (nums[start] == target) {
            return start;
        }
        if (nums[end] == target) {
            return end;
        }
        return -1;
    }
    
  • Time Complexity: O(lg n)
  • Space Complexity: O(1)

<center>#34 Search for a Range</center>

  • link
  • Description:
    • Given an array of integers sorted in ascending order, find the starting and ending position of a given target value.
    • Your algorithm's runtime complexity must be in the order of O(log n).
  • Input: [5, 7, 7, 8, 8, 10] and target value 8
  • Output: [3, 4]
  • Assumptions:
    • If the target is not found in the array, return [-1, -1]
  • Solution:
    • 使用两次二分分别找target第一次出现的索引和最后一次出现的索引。
    • 使用两次二分是由于worst case 整个数组都是target, 两次二分能保证O(lg n)的复杂度。
  • Code:
    # code block
    public int[] searchRange(int[] nums, int target) {
        int[] result = new int[2];
        if (nums == null || nums.length == 0) {
            result[0] = -1;
            result[1] = -1;
            return result;
        }
        int start = 0, end = nums.length - 1;
        // find the first occurence of target
        while (start < end - 1) {
            int mid = start + (end - start) / 2;
            if (nums[mid] >= target) {
                end = mid;
            } else {
                start = mid;
            }
        }
        if (nums[start] == target) {
            result[0] = start;
        } else if (nums[end] == target) {
            result[0] = end;
        } else {
            result[0] = -1;
            result[1] = -1;
            return result;
        }
    
        start = 0;
        end = nums.length - 1;
        // find the last occurence of target
        while (start < end - 1) {
            int mid = start + (end - start) / 2;
            if (nums[mid] <= target) {
                start = mid;
            } else {
                end = mid;
            }
        }
        if (nums[end] == target) {
            result[1] = end;
        } else {
            result[1] = start;
        }
        return result;
    }
    
    
  • Time Complexity: O(lg n)
  • Space Complexity: O(1)

<center>#35 Search Insert Position</center>

  • link

  • Description:

    • Given a sorted array and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.
  • Input: [1,3,5,6], 5

  • Output: 2

  • Assumptions:

    • assume no duplicates in the array.
  • Solution:

    • 搜索排序数组就要想到二分法。 这题要找的是第一个>= target的索引。
    • 注意点:
      • 使用start < end - 1 是防止栈溢出, 如果start = end - 1的话mid就会是start,如果nums[mid] < target就会陷入死循环
      • 从循环跳出会有两种情况, start == end 或 start == end - 1。 所以对start和end进行分别处理。
  • Code:

    # code block
    public int searchInsert(int[] nums, int target) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        int start = 0, end = nums.length - 1;
        while (start < end - 1) {
            int mid = start + (end - start) / 2;
            if (nums[mid] >= target) {
                end = mid;
            } else {
                start = mid;
            }
        }
        if (nums[start] >= target) {
            return start;
        } else if (nums[end] >= target) {
            return end;
        } else {
          // the target is greater than all the numbers in the array
            return end + 1;
        }
    }
    
    
  • Time Complexity: O(lg n)

  • Space Complexity: O(1)

<center>#36 Valid Sudoku</center>

  • link
  • Description:
    • Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules.
    • The Sudoku board could be partially filled, where empty cells are filled with the character '.'.
  • Input:
  • Output:
  • Assumptions:
    • A valid Sudoku board (partially filled) is not necessarily solvable. Only the filled cells need to be validated.
  • Solution:
    • 注意逻辑要分离
  • Code:
    # code block
    public boolean isValidSudoku(char[][] board) {
        return checkRow(board) && checkColumn(board) && checkGrids(board);
    }
    
    private boolean checkRow(char[][] board) {
        for (int i = 0; i < 9; i++) {
            boolean[] visit = new boolean[10];
            for (int j = 0; j < 9; j++) {
                if (board[i][j] == '.') {
                    continue;
                }
                if (visit[board[i][j] - '0']) {
                    return false;
                }
                visit[board[i][j] - '0'] = true;
            }
        }
        return true;
    }
    
    private boolean checkColumn(char[][] board) {
        for (int j = 0; j < 9; j++) {
            boolean[] visit = new boolean[10];
            for (int i = 0; i < 9; i++) {
                if (board[i][j] == '.') {
                    continue;
                }
                if (visit[board[i][j] - '0']) {
                    return false;
                }
                visit[board[i][j] - '0'] = true;
            }
        }
        return true;
    }
    
    private boolean checkGrids(char[][] board) {
        for (int i = 0; i < 9; i += 3) {
            for (int j = 0; j < 9; j += 3) {
                if (!checkGrid(board, i, j)) {
                    return false;
                }
            }
        }
        return true;
    }
    
    private boolean checkGrid(char[][] board, int x, int y) {
        boolean[] visit = new boolean[10];
        for (int i = x; i < x + 3; i++) {
            for (int j = y; j < y + 3; j++) {
                if (board[i][j] == '.') {
                    continue;
                }
                if (visit[board[i][j] - '0']) {
                    return false;
                }
                visit[board[i][j] - '0'] = true;
            }
        }
        return true;
    }
    
  • Time Complexity: O(n ^ 2)
  • Space Complexity: O(n ^ 2)

<center>#38 Count and Say</center>

  • link
  • Description:
    • The count-and-say sequence is the sequence of integers with the first five terms as following:
    • 1 is read off as "one 1" or 11.
    • 11 is read off as "two 1s" or 21.
    • 21 is read off as "one 2, then one 1" or 1211.
    • Given an integer n, generate the nth term of the count-and-say sequence.
    • Note: Each term of the sequence of integers will be represented as a string.
  • Input: 4
  • Output: "1211"
  • Solution:
    • 模拟题,按照题目的原意模拟过程
    • 注意corner case,比如1的时候
  • Code:
    # code block
    public String countAndSay(int n) {
        String result = "1";
        for (int i = 2; i <= n; i++) {
            result = countAndSay(result);
        }
        return result;
    }
    
    private String countAndSay(String str) {
        int count = 1;
        char say = str.charAt(0);
        StringBuilder sb = new StringBuilder();
        for (int i = 1; i < str.length(); i++) {
            if (str.charAt(i) == say) {
                count++;
                continue;
            } else {
                sb.append(count);
                sb.append(say);
                count = 1;
                say = str.charAt(i);
            }
        }
        sb.append(count);
        sb.append(say);
        return sb.toString();
    }
    

<center>#39 Combination Sum</center>

  • link

  • Description:

    • Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
    • The same repeated number may be chosen from C unlimited number of times.
  • Input: [2, 3, 6, 7]

  • Output: [[7], [2, 2, 3]]

  • Assumptions:

    • without duplicates
      • All numbers (including target) will be positive integers.
  • Solution:

    • 组合的题, 不包含重复数字,可以把组合当做一个隐式图, 用DFS对隐式图进行遍历。首先排序,因为排完序之后方便去重, 还方便对树进行剪枝。假如第i个数已经大于目标,那后面的数一定也大于目标,不在答案中。
    • 注意点:
      • 每找到一个答案要进行deepcopy,因为dfs中用到了回溯,state数组会一直变化。
  • Code:

    # code block
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        List<List<Integer>> result = new ArrayList<>();
        if (candidates == null || candidates.length == 0) {
            return result;
        }
        Arrays.sort(candidates);
        dfsHelper(candidates, target, 0, new ArrayList<Integer>(), result);
        return result;
    }
    
    private void dfsHelper(int[] nums, int target, int start, List<Integer> state, List<List<Integer>> result) {
        if (target == 0) {
            result.add(new ArrayList<Integer>(state));
            return;
        }
        for (int i = start; i < nums.length; i++) {
          // 剪枝
            if (nums[i] > target) {
                break;
            }
            state.add(nums[i]);
            // start from i because every number can be used for multiple times.
            dfsHelper(nums, target - nums[i], i, state, result);
            // backtracking
            state.remove(state.size() - 1);
        }
    }
    
    

<center>#40 Combination Sum II</center>

  • link

  • Description:

    • Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
  • Input: [10, 1, 2, 7, 6, 1, 5] and target 8

  • Output: [[1, 7], [1, 2, 5], [2, 6], [1, 1, 6]]

  • Assumptions:

    • All numbers (including target) will be positive integers.
      • The solution set must not contain duplicate combinations
  • Solution:

    • 求组合的题, 可重复数字,并且数组中每个数字只能用一次,可以把组合当做一个隐式图, 用DFS对隐式图进行遍历。首先排序,因为排完序之后方便去重, 还方便对树进行剪枝。假如第i个数已经大于目标,那后面的数一定也大于目标,不在答案中。
    • 注意点:
      • 每找到一个答案要进行deepcopy,因为dfs中用到了回溯,state数组会一直变化。
        • 去重方法用remove duplicate注释了
  • Code:

    # code block
    public List<List<Integer>> combinationSum2(int[] candidates, int target) {
         List<List<Integer>> result = new ArrayList<>();
         if (candidates == null || candidates.length == 0) {
             return result;
         }
         Arrays.sort(candidates);
         dfsHelper(candidates, target, 0, new ArrayList<Integer>(), result);
         return result;
     }
    
     private void dfsHelper(int[] candidates, int target, int start, List<Integer> state, List<List<Integer>> result) {
         if (target == 0) {
             result.add(new ArrayList<Integer>(state));
             return;
         }
         for (int i = start; i < candidates.length; i++) {
             if (candidates[i] > target) {
                 break;
             }
             // remove duplicates
             if (i != start && candidates[i] == candidates[i - 1]) {
                 continue;
             }
             state.add(candidates[i]);
             dfsHelper(candidates, target - candidates[i], i + 1, state, result);
             state.remove(state.size() - 1);
         }
    
     }
    
    

<center>#43 Multiply Strings</center>

  • link
  • Description:
    • Given two non-negative integers num1 and num2 represented as strings, return the product of num1 and num2.
    • The length of both num1 and num2 is < 110.
    • Both num1 and num2 contains only digits 0-9.
    • Both num1 and num2 does not contain any leading zero.
    • You must not use any built-in BigInteger library or convert the inputs to integer directly.
  • Input: "123", "456"
  • Output: "56088"
  • Solution:
    • 暴力方法是直接模拟乘法计算
    • 比较优雅的方法可以参考下图
    • [图片上传失败...(image-4f2751-1534568626309)]
    • 注意点:主要处理trailing zeroes
  • Code:
    # code block
    public String multiply(String num1, String num2) {
        if (num1.equals("0") || num2.equals("0")) {
            return "0";
        }
        int l1 = num1.length();
        int l2 = num2.length();
        int[] result = new int[l1 + l2];
        for (int i = l1 - 1; i >= 0; i--) {
            for (int j = l2 - 1; j >= 0; j--) {
                int val = (num1.charAt(i) - '0') * (num2.charAt(j) - '0');
                int sum = result[i + j + 1] + val;
                result[i + j] += sum / 10;
                result[i + j + 1] = sum % 10;
            }
        }
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < result.length; i++) {
            if (sb.length() == 0 && result[i] == 0) {
                continue;
            }
            sb.append(result[i]);
        }
        return sb.length() == 0 ? "0" : sb.toString();
    }
    
  • Time Complexity: O(m * n)
  • Space Complexity: O(m * n)

<center>#46 Permutations</center>

  • link
  • Description:
    • Given a collection of distinct numbers, return all possible permutations.
  • Input:[1,2,3]
  • Output: [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
  • Solution:
    • 与排列相比较,需要多一个Set来记录当前状态的值的索引
    • 回溯的时候注意不仅要回溯当前状态,也需要回溯Set的值
    • 因为是distinct numbers, 所以不需要去重
  • Code:
    # code block
    public List<List<Integer>> permute(int[] nums) {
        List<List<Integer>> result = new ArrayList<>();
        if (nums == null || nums.length == 0) {
            return result;
        }
        dfsHelper(nums, new HashSet<Integer>(), new ArrayList<Integer>(), result);
        return result;
    }
    
    private void dfsHelper(int[] nums, Set<Integer> set, List<Integer> state, List<List<Integer>> result) {
        if (nums.length == set.size()) {
            result.add(new ArrayList<Integer>(state));
            return;
        }
        for (int i = 0; i < nums.length; i++) {
            if (!set.contains(i)) {
                set.add(i);
                state.add(nums[i]);
                dfsHelper(nums, set, state, result);
                // backtracking
                state.remove(state.size() - 1);
                set.remove(i);
            }
        }
    }
    

<center>#47 Permutations II</center>

  • link
  • Description:
    • Given a collection of numbers that might contain duplicates, return all possible unique permutations.
  • Input: [1,1,2]
  • Output: [[1,1,2],[1,2,1],[2,1,1]]
  • Solution:
    • Permutation 的 follow up,经典的去重题
    • 与combination一样,要选代表,不同的就是combination是通过start记录历史,而permutation是使用set
    • 去重第一个要想到排序
    • 去重的部分使用注释标识了
  • Code:
    # code block
    public List<List<Integer>> permuteUnique(int[] nums) {
        List<List<Integer>> result = new ArrayList<>();
        if (nums == null || nums.length == 0) {
            return result;
        }
        Arrays.sort(nums);
        dfsHelper(nums, new HashSet<Integer>(), new ArrayList<Integer>(), result);
        return result;
    }
    
    private void dfsHelper(int[] nums, Set<Integer> set, List<Integer> state, List<List<Integer>> result) {
        if (nums.length == set.size()) {
            result.add(new ArrayList<Integer>(state));
            return;
        }
        for (int i = 0; i < nums.length; i++) {
            // remove duplicate
            if (set.contains(i)) {
                continue;
            }
            // if nums[i] equals to nums[i - 1], then nums[i - 1] must be in the permutation
            // this is the strategy for removing duplicates
            if (i != 0 && nums[i] == nums[i - 1] && !set.contains(i - 1)) {
                continue;
            }
    
            state.add(nums[i]);
            set.add(i);
            dfsHelper(nums, set, state, result);
            // backtracking
            set.remove(i);
            state.remove(state.size() - 1);
        }
    }
    

<center>#48 Rotate Image</center>

  • link
  • Description:
    • You are given an n x n 2D matrix representing an image.
    • Rotate the image by 90 degrees (clockwise).
    • You have to rotate the image in-place, which means you have to modify the input 2D matrix directly.
    • DO NOT allocate another 2D matrix and do the rotation.
  • Input:
    [
      [1,2,3],
      [4,5,6],
      [7,8,9]
    ],
    
  • Output:
    [
      [7,4,1],
      [8,5,2],
      [9,6,3]
    ]
    
  • Solution:
    • 这其实更像是找规律的题
    • 解法一:沿对角线翻转,按行reverse
    • 解法二:通过寻找规律可以发现,swap三次可以使沿中心对称的四个点到达最终位置,所以可以一圈一圈的转换。One Pass。
  • Code:
    # code block
    解法一:
    public void rotate(int[][] matrix) {
        if (matrix == null || matrix.length <= 1) {
            return;
        }
        int n = matrix.length;
        for (int i = 1; i < n; i++) {
            for (int j = 0; j < i; j++) {
                swap(matrix, i, j, j, i);
            }
        }
        for (int i = 0; i < n; i++) {
            reverse(matrix, i);
        }
    }
    
    private void reverse(int[][] matrix, int x) {
        int start = 0, end = matrix[x].length - 1;
        while (start < end) {
            int tmp = matrix[x][start];
            matrix[x][start] = matrix[x][end];
            matrix[x][end] = tmp;
            start++;
            end--;
        }
    }
    
    private void swap(int[][] matrix, int x1, int y1, int x2, int y2) {
        int tmp = matrix[x1][y1];
        matrix[x1][y1] = matrix[x2][y2];
        matrix[x2][y2] = tmp;
    }
    解法二:
    public void rotate(int[][] matrix) {
        if (matrix == null || matrix.length <= 1) {
            return;
        }
        int n = matrix.length;
        int start = 0, end = n - 1;
        while (start < end) {
            for (int i = start; i < end; i++) {
                swap(matrix, start, i, i, end);
                swap(matrix, start, i, end, end - i);
                swap(matrix, start, i, end - i, start);
            }
            start++;
            end--;
        }
    }
    
    private void swap(int[][] matrix, int x1, int y1, int x2, int y2) {
        int tmp = matrix[x1][y1];
        matrix[x1][y1] = matrix[x2][y2];
        matrix[x2][y2] = tmp;
    }
    
  • Time Complexity: O(n ^ 2)
  • Space Complexity: O(1)

<center>#49 Group Anagrams</center>

  • link
  • Description:
    • Given an array of strings, group anagrams together.
  • Input: ["eat","tea","tan","ate","nat","bat"]
  • Output: [["bat"],["ate","eat","tea"],["nat","tan"]]
  • Solution:
    • 这题考察的是哈希表的应用,以及对anagram的理解
    • 通过对每一个string的char数组排序作为key,每一组anagram都有同一个key,使用hashmap做收集
    • 更优的解法是自己写不重复的hash function,可以参考网上的质数解法
  • Code:
    # code block
    public List<List<String>> groupAnagrams(String[] strs) {
        List<List<String>> result = new ArrayList<>();
        if (strs == null || strs.length == 0) {
            return result;
        }
        Map<String, List<String>> map = new HashMap<>();
        for (String s : strs) {
            char[] sc = s.toCharArray();
            Arrays.sort(sc);
            String key = new String(sc);
            if (!map.containsKey(key)) {
                map.put(key, new ArrayList<String>());
            }
            map.get(key).add(s);
        }
        for (String key : map.keySet()) {
            result.add(map.get(key));
        }
        return result;
    }
    
  • Time Complexity: O(n * lg(length))
  • Space Complexity: O(n * length)

相关文章

  • Leetcode算法解析1-50

    #1 Two Sum
    link Description:Given an arr...

  • Quick Select Algorithm 快速选择算法

    更多代码和Leetcode题目解析请看这里 什么是Quick select? Quick select算法通常用来...

  • leetcode算法解析-1

    题1:给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回...

  • Swap Nodes in Pairs

    标签: C++ 算法 LeetCode 链表 每日算法——leetcode系列 问题 Swap Nodes in ...

  • Combination Sum II

    标签: C++ 算法 LeetCode DFS 每日算法——leetcode系列 问题 Combinatio...

  • Divide Two Integers

    标签: C++ 算法 LeetCode 每日算法——leetcode系列 问题 Divide Two Integ...

  • First Missing Positive

    标签: C++ 算法 LeetCode 数组 每日算法——leetcode系列 问题 First Missing...

  • Valid Sudoku

    Valid Sudoku 标签: C++ 算法 LeetCode 每日算法——leetcode系列 问题 Val...

  • Next Permutation

    标签: C++ 算法 LeetCode 数组 每日算法——leetcode系列 问题 Next Permuta...

  • Trapping Rain Water

    标签: C++ 算法 LeetCode 数组 每日算法——leetcode系列 问题 Trapping Rain...

网友评论

    本文标题:Leetcode算法解析1-50

    本文链接:https://www.haomeiwen.com/subject/xbhfiftx.html