美文网首页
凸优化(二)凸锥与常见凸集

凸优化(二)凸锥与常见凸集

作者: SaySei | 来源:发表于2018-12-15 18:48 被阅读0次

1. 概述

\quad那么开始第二期,介绍凸锥和常见的集合,这期比较短(因为公式打得太累了),介绍凸集和凸锥与仿射集的意义在哪呢,为的就是将很多非凸集合转化为凸集的手段,其中,又以凸包(包裹集合所有点的最小凸集)为最常用的手段,在细节一点,闭凸包(闭合的凸包)是更常用的手段。

2. 凸锥(convex cone):

2.1 定义

(1)锥(cone)定义:对于集合C\subseteq{R^n},\forall x \in C,\theta \ge0,有\theta x \subseteq C则x构成的集合称为。说明一下,锥不一定是连续的(可以是数条过原点的射线的集合)。

(2)凸锥(convex cone)定义:凸锥包含了集合内点的所有凸锥组合。若C\subseteq{R^n},x_1,x_2...x_n\in C,\theta_i\ge0,则\theta_1{x_1}+\theta_2{x_2}+...+\theta_n{x_n}也属于凸锥集合C。这里说明一下,就是说一个集合既是凸集又是锥,那么就是凸锥(废话)。

(3)凸锥包(convex cone hull)定义:凸锥包是包含C的最小的凸锥,假设x_1,x_2...x_n\in C,凸锥包表示为:\{\theta_1{x_1}+\theta_2{x_2}+...+\theta_n{x_n}|x_1,x_2...x_n\in C,\theta_i\ge0\}

3. 常用凸集

3.1 常用集合

集合 是否属于凸集、仿射集、凸锥
凸集、仿射集,不一定是凸锥(在原点上是凸锥)
空集 凸集、仿射集、凸锥
R^nn维空间 凸集、仿射集、凸锥
R^n的子空间 凸集、仿射集、凸锥
\forall任意直线 凸集、仿射集、不一定是凸锥(过原点上是凸锥)
\{x_0+\theta v|\theta\ge0\},x\in R^n,\theta\in R,v\in R^n的子空间 凸集、仿射集(是点的时候)、凸锥(过原点时)

以上是比较简单的集合,接下来来看看稍微复杂的常用集合。

(1)超平面:\{x|a^{T}x=b,x\in R^n,b\in R,a\in R^n\},其中a和x为n维向量,b为常数。解释一下就是,想想初中学的直线为kx-y=-b,高中学的平面为Ax+By+Cz=-D。拓展到n维空间就是超平面啦。超平面是凸集、仿射集,只有在过原点的时候是个凸锥。

(2)球:B(x_c,r)=\{x||x-x_c||_2\le r\},即点到圆心的距离的二范数小于半径的点构成的集合。那么解释一下二范数的求法:||A||_2=\sqrt{A^T A}。球是凸集、当是个点的时候是仿射集、凸锥。

(3)椭球:B(x_c,P)=\{x|(x-x_c)^T P^{-1}(x-x_c)\le 1,P\in S^{n}_{++}\},其中P为正定对称矩阵,正定就是其特征值全大于0.相关概念不再赘述。同理,椭球是凸集,当是个点的时候是仿射集、凸锥。

(4)多面体(polyhedron):P=\{a_j^Tx\le b_j,c_i^Tx= d_j\},多面体由半空间与超平面的交集组成。依旧是凸集。

(5)单纯形(simplex):特殊多面体,R^n空间中选择v_0...v_k共k+1个点,满足v_1-v_0,...v_k-v_0线性无关则构成单纯形为C=conv\{v_0...v_k\}=\{\theta_0v_0+...+\theta_kv_k,\theta\ge0,1^T\theta=1\}。看起来比较绕,其实想想就明白了,就是找两两组合起来构成的线不平行的点,然后找这些点的凸包集合。当然有一种情况需要说明,就是在R^n空间中,由于无法找到n+1个向量线性无关,所以点也是有个数限制的。即不超过n+2个。举个例子,就是二维空间中,不存在四边形的单纯形,三维空间没有五面体的单纯形。

(6)这里开始介绍三个不太能想像出具体形式的集合,对称矩阵集合S^n=\{x\in R^n_n|x=x^T\},是凸锥。

(7)对称半正定矩阵集合S^n_+=\{x\in R^n_n|x=x^T,且x半正定\}来简单证明一下它是凸锥,半正定矩阵有个特点,假设半正定矩阵A,则有\forall x\in R^n,x^TAx\ge 0,那么证明开始,有两个矩阵A、B集合在C中,满足x^TAx\ge 0,x^TBx\ge 0x^T\theta_1Ax+x^T\theta_2Bx=x^T(\theta_1A+\theta_2B)x\ge0\tag{1}显然成立,得到\theta_1A+\theta_2B仍在集合C中,得证。

(8)对称正定矩阵集合S^n_+=\{x\in R^n_n|x=x^T,且x正定\}(其实表示正定有个数学符号,表示其特征值大于0,和大于号很像,但是markdown我不会打那个符号),不是凸锥!,具体看(7)的证明,这里(1)式依旧成立,但是无法满足大于0,因为当两个\theta参数为0时就会有等于0的情况。反例也可以找到,当n=1时,此矩阵集合则变为了S^1_{++}=R_{++}显然不包含原点,则不是凸锥。

那么这次写到这里,下次介绍啥呢(其实我想跳一跳的)。

相关文章

  • 凸优化(二)凸锥与常见凸集

    1. 概述 那么开始第二期,介绍凸锥和常见的集合,这期比较短(因为公式打得太累了),介绍凸集和凸锥与仿射集的意义在...

  • 凸优化笔记2-主要内容

    笔记主要内容 凸集、凸函数、凸优化 凸优化理论 若干算法

  • 凸优化(二)——凸集

    〇、说明 凸优化主要学习《凸优化》(Stephen Boyd等著,王书宁等译)[1]这本书。学习过程中,对其内容的...

  • 3,4 仿射,凸,凸锥

    仿射组合凸组合凸锥组合组合后的所有点组成的称为仿射\凸\凸锥包

  • 7,8 凸集的交,保凸运算

    若为凸集,则为凸集仿射函数是仿射的,当若为凸,仿射,则为凸,缩放与位移式保持凸性的。例:两个凸集的和是凸的例:线性...

  • 关于凸优化

    凸集 凸集的定义为: 如果集合C中任意2个元素连线上的点也在集合C中,则C为凸集。 如下图: 常见的凸集:n维实数...

  • 机器学习(6)——凸优化理论(一)

    概述   凸优化,或叫做凸最优化,凸最小化,是数学最优化的一个子领域,研究定义于凸集中的凸函数最小化的问题。凸优化...

  • Convex Optimization Note 1 | Int

    凸优化,或叫做凸最优化,凸最小化,是数学最优化的一个子领域,研究定义于凸集中的凸函数最小化的问题。凸优化在某种意义...

  • 凸优化有什么用

    本文结构: 凸优化有什么用? 什么是凸优化? 凸优化有什么用? 鉴于本文中公式比较多,先把凸优化的意义写出来吧,就...

  • 凸优化&非凸优化

    凸优化指的是,如果得到了局部最优,那么这个局部最优就是全局最优。 讲凸优化就涉及到凸函数和凸集合集合C内任意两点间...

网友评论

      本文标题:凸优化(二)凸锥与常见凸集

      本文链接:https://www.haomeiwen.com/subject/xhbihqtx.html