美文网首页Glide.Picasso.Fresco详解Fresco源码解析Fresco
Fresco 缓存策略管理源码分析(一)

Fresco 缓存策略管理源码分析(一)

作者: TragedyGo | 来源:发表于2017-01-19 17:55 被阅读557次

所有的image开源框架,都有自己的缓存策略,一级快速内存映射,二级磁盘映射,三级网络下载映射。
我们还是继续研究Fresco缓存,看完,估计其它你都懂了,千篇一律,关键是每个优秀框架命中率的问题和key的定义,一个好的key可以在开发使用方便,映射准确。
我们先看一级缓存策略:

/**
 * Fresco entry point.
 *
 * <p/> You must initialize this class before use. The simplest way is to just do
 * {#code Fresco.initialize(Context)}.
 */
public class Fresco {

  private static PipelineDraweeControllerBuilderSupplier sDraweeControllerBuilderSupplier;

  /** Initializes Fresco with the specified config. */
  public static void initialize(Context context, ImagePipelineConfig imagePipelineConfig) {
    ImagePipelineFactory.initialize(imagePipelineConfig);
    initializeDrawee(context);
  }

  private static void initializeDrawee(Context context) {
    sDraweeControllerBuilderSupplier = new PipelineDraweeControllerBuilderSupplier(context);
    SimpleDraweeView.initialize(sDraweeControllerBuilderSupplier);
  }

  .......
}


public class PipelineDraweeControllerBuilderSupplier implements Supplier<PipelineDraweeControllerBuilder> {

  private final Context mContext;
  private final ImagePipeline mImagePipeline;
  private final PipelineDraweeControllerFactory mPipelineDraweeControllerFactory;
  private final Set<ControllerListener> mBoundControllerListeners;

  public PipelineDraweeControllerBuilderSupplier(Context context,
      ImagePipelineFactory imagePipelineFactory,
      Set<ControllerListener> boundControllerListeners) {
    mContext = context;
    mImagePipeline = imagePipelineFactory.getImagePipeline();

    final AnimatedFactory animatedFactory = imagePipelineFactory.getAnimatedFactory();
    AnimatedDrawableFactory animatedDrawableFactory = null;
    if (animatedFactory != null) {
      animatedDrawableFactory = animatedFactory.getAnimatedDrawableFactory(context);
    }

    mPipelineDraweeControllerFactory = new PipelineDraweeControllerFactory(
        context.getResources(),
        DeferredReleaser.getInstance(),
        animatedDrawableFactory,
        UiThreadImmediateExecutorService.getInstance(),
        mImagePipeline.getBitmapMemoryCache()); // 一级缓存
    mBoundControllerListeners = boundControllerListeners;
  }
  .......

}

Fresco初始化的时候会初始化Controller工厂,然后PipelineDraweeControllerFactory的缓存来源来自ImagePipeline,而ImagePipeline来自ImagePipelineFactory

/**
 * Factory class for the image pipeline.
 *
 * <p>This class constructs the pipeline and its dependencies from other libraries.
 *
 * <p>As the pipeline object can be quite expensive to create, it is strongly
 * recommended that applications create just one instance of this class
 * and of the pipeline.
 */
@NotThreadSafe
public class ImagePipelineFactory {

  private static ImagePipelineFactory sInstance = null;
  private final ThreadHandoffProducerQueue mThreadHandoffProducerQueue; // 这货很有用,专门干资源回收的脏活
  .......
  private final ImagePipelineConfig mConfig;
  private CountingMemoryCache<CacheKey, CloseableImage> mBitmapCountingMemoryCache;
  private MemoryCache<CacheKey, CloseableImage> mBitmapMemoryCache;
  private CountingMemoryCache<CacheKey, PooledByteBuffer> mEncodedCountingMemoryCache;
  private MemoryCache<CacheKey, PooledByteBuffer> mEncodedMemoryCache;
  private BufferedDiskCache mMainBufferedDiskCache;
  private FileCache mMainFileCache;
  private ImageDecoder mImageDecoder;
  private ImagePipeline mImagePipeline;
  private ProducerFactory mProducerFactory;
  private ProducerSequenceFactory mProducerSequenceFactory;
  private BufferedDiskCache mSmallImageBufferedDiskCache;
  private FileCache mSmallImageFileCache;

  private PlatformBitmapFactory mPlatformBitmapFactory;
  private PlatformDecoder mPlatformDecoder;

  private AnimatedFactory mAnimatedFactory;

  public MemoryCache<CacheKey, PooledByteBuffer> getEncodedMemoryCache() {
    if (mEncodedMemoryCache == null) {
      mEncodedMemoryCache =
          EncodedMemoryCacheFactory.get(
              getEncodedCountingMemoryCache(),
              mConfig.getImageCacheStatsTracker());
    }
    return mEncodedMemoryCache;
  }

 private BufferedDiskCache getMainBufferedDiskCache() {
    if (mMainBufferedDiskCache == null) {
      mMainBufferedDiskCache =
          new BufferedDiskCache(
              getMainFileCache(),
              mConfig.getPoolFactory().getPooledByteBufferFactory(),
              mConfig.getPoolFactory().getPooledByteStreams(),
              mConfig.getExecutorSupplier().forLocalStorageRead(),
              mConfig.getExecutorSupplier().forLocalStorageWrite(),
              mConfig.getImageCacheStatsTracker());
    }
    return mMainBufferedDiskCache;
  }

  public FileCache getMainFileCache() {
    if (mMainFileCache == null) {
      DiskCacheConfig diskCacheConfig = mConfig.getMainDiskCacheConfig();
      mMainFileCache = mConfig.getFileCacheFactory().get(diskCacheConfig);
    }
    return mMainFileCache;
  }

  public FileCache getSmallImageFileCache() {
    if (mSmallImageFileCache == null) {
      DiskCacheConfig diskCacheConfig = mConfig.getSmallImageDiskCacheConfig();
      mSmallImageFileCache = mConfig.getFileCacheFactory().get(diskCacheConfig);
    }
    return mSmallImageFileCache;
  }

  private BufferedDiskCache getSmallImageBufferedDiskCache() {
    if (mSmallImageBufferedDiskCache == null) {
      mSmallImageBufferedDiskCache =
          new BufferedDiskCache(
              getSmallImageFileCache(),
              mConfig.getPoolFactory().getPooledByteBufferFactory(),
              mConfig.getPoolFactory().getPooledByteStreams(),
              mConfig.getExecutorSupplier().forLocalStorageRead(),
              mConfig.getExecutorSupplier().forLocalStorageWrite(),
              mConfig.getImageCacheStatsTracker());
    }
    return mSmallImageBufferedDiskCache;
  }

 public CountingMemoryCache<CacheKey, PooledByteBuffer> getEncodedCountingMemoryCache() {
    if (mEncodedCountingMemoryCache == null) {
      mEncodedCountingMemoryCache =
          EncodedCountingMemoryCacheFactory.get(
              mConfig.getEncodedMemoryCacheParamsSupplier(),
              mConfig.getMemoryTrimmableRegistry());
    }
    return mEncodedCountingMemoryCache;
  }

public CountingMemoryCache<CacheKey, CloseableImage>
      getBitmapCountingMemoryCache() {
    if (mBitmapCountingMemoryCache == null) {
      mBitmapCountingMemoryCache =
          BitmapCountingMemoryCacheFactory.get(
              mConfig.getBitmapMemoryCacheParamsSupplier(),
              mConfig.getMemoryTrimmableRegistry());
    }
    return mBitmapCountingMemoryCache;
  }

public MemoryCache<CacheKey, CloseableImage> getBitmapMemoryCache() { // 一级缓存
    if (mBitmapMemoryCache == null) {
      mBitmapMemoryCache =
          BitmapMemoryCacheFactory.get(
              getBitmapCountingMemoryCache(),
              mConfig.getImageCacheStatsTracker());
    }
    return mBitmapMemoryCache;
  }

  .......
}

这个工厂类东西很多,很多cache规则和buffer,我们后面介绍,先看getBitmapMemoryCache(),mBitmapMemoryCache来自BitmapCountingMemoryCacheFactory
这货里面注册了一个系统内存低的垃圾GC回调和一个bitmapCacheSupplier。

public class ImagePipelineConfig {
 // There are a lot of parameters in this class. Please follow strict alphabetical order.
  @Nullable private final AnimatedImageFactory mAnimatedImageFactory;
  private final Bitmap.Config mBitmapConfig;
  private final Supplier<MemoryCacheParams> mBitmapMemoryCacheParamsSupplier;
  private final CacheKeyFactory mCacheKeyFactory;
  private final Context mContext;
  private final boolean mDownsampleEnabled;
  private final boolean mDecodeMemoryFileEnabled;
  private final FileCacheFactory mFileCacheFactory;
  private final Supplier<MemoryCacheParams> mEncodedMemoryCacheParamsSupplier;
  private final ExecutorSupplier mExecutorSupplier;
  private final ImageCacheStatsTracker mImageCacheStatsTracker;
  @Nullable private final ImageDecoder mImageDecoder;
  private final Supplier<Boolean> mIsPrefetchEnabledSupplier;
  private final DiskCacheConfig mMainDiskCacheConfig;
  private final MemoryTrimmableRegistry mMemoryTrimmableRegistry;
  private final NetworkFetcher mNetworkFetcher;
  @Nullable private final PlatformBitmapFactory mPlatformBitmapFactory;
  private final PoolFactory mPoolFactory;
  private final ProgressiveJpegConfig mProgressiveJpegConfig;
  private final Set<RequestListener> mRequestListeners;
  private final boolean mResizeAndRotateEnabledForNetwork;
  private final DiskCacheConfig mSmallImageDiskCacheConfig;
  private final ImagePipelineExperiments mImagePipelineExperiments;

 private ImagePipelineConfig(Builder builder) {
    mAnimatedImageFactory = builder.mAnimatedImageFactory;
    mBitmapMemoryCacheParamsSupplier =
        builder.mBitmapMemoryCacheParamsSupplier == null ?
            new DefaultBitmapMemoryCacheParamsSupplier(
                (ActivityManager) builder.mContext.getSystemService(Context.ACTIVITY_SERVICE)) :
            builder.mBitmapMemoryCacheParamsSupplier;
    mBitmapConfig =
        builder.mBitmapConfig == null ?
            Bitmap.Config.ARGB_8888 :
            builder.mBitmapConfig;
    mCacheKeyFactory =
        builder.mCacheKeyFactory == null ?
            DefaultCacheKeyFactory.getInstance() :
            builder.mCacheKeyFactory;
    mContext = Preconditions.checkNotNull(builder.mContext);
    mDecodeMemoryFileEnabled = builder.mDecodeMemoryFileEnabled;
    mFileCacheFactory = builder.mFileCacheFactory == null ?
        new DiskStorageCacheFactory(new DynamicDefaultDiskStorageFactory()) :
        builder.mFileCacheFactory;
    mDownsampleEnabled = builder.mDownsampleEnabled;
    mEncodedMemoryCacheParamsSupplier =
        builder.mEncodedMemoryCacheParamsSupplier == null ?
            new DefaultEncodedMemoryCacheParamsSupplier() :
            builder.mEncodedMemoryCacheParamsSupplier;
    mImageCacheStatsTracker =
        builder.mImageCacheStatsTracker == null ?
            NoOpImageCacheStatsTracker.getInstance() :
            builder.mImageCacheStatsTracker;
    mImageDecoder = builder.mImageDecoder;
    mIsPrefetchEnabledSupplier =
        builder.mIsPrefetchEnabledSupplier == null ?
            new Supplier<Boolean>() {
              @Override
              public Boolean get() {
                return true;
              }
            } :
            builder.mIsPrefetchEnabledSupplier;
    mMainDiskCacheConfig =
        builder.mMainDiskCacheConfig == null ?
            getDefaultMainDiskCacheConfig(builder.mContext) :
            builder.mMainDiskCacheConfig;
    mMemoryTrimmableRegistry =
        builder.mMemoryTrimmableRegistry == null ?
            NoOpMemoryTrimmableRegistry.getInstance() :
            builder.mMemoryTrimmableRegistry;
    mNetworkFetcher =
        builder.mNetworkFetcher == null ?
            new HttpUrlConnectionNetworkFetcher() :
            builder.mNetworkFetcher;
    mPlatformBitmapFactory = builder.mPlatformBitmapFactory;
    mPoolFactory =
        builder.mPoolFactory == null ?
            new PoolFactory(PoolConfig.newBuilder().build()) :
            builder.mPoolFactory;
    mProgressiveJpegConfig =
        builder.mProgressiveJpegConfig == null ?
            new SimpleProgressiveJpegConfig() :
            builder.mProgressiveJpegConfig;
    mRequestListeners =
        builder.mRequestListeners == null ?
            new HashSet<RequestListener>() :
            builder.mRequestListeners;
    mResizeAndRotateEnabledForNetwork = builder.mResizeAndRotateEnabledForNetwork;
    mSmallImageDiskCacheConfig =
        builder.mSmallImageDiskCacheConfig == null ?
            mMainDiskCacheConfig :
            builder.mSmallImageDiskCacheConfig;

    // Below this comment can't be built in alphabetical order, because of dependencies
    int numCpuBoundThreads = mPoolFactory.getFlexByteArrayPoolMaxNumThreads();
    mExecutorSupplier =
        builder.mExecutorSupplier == null ?
            new DefaultExecutorSupplier(numCpuBoundThreads) : builder.mExecutorSupplier;
    mImagePipelineExperiments = builder.mExperimentsBuilder.build();
  }
}

然后你看ImagePipelineConfig构造方法

/**
 * Supplies {@link MemoryCacheParams} for the bitmap memory cache.
 */
public class DefaultBitmapMemoryCacheParamsSupplier implements Supplier<MemoryCacheParams> {
  private static final int MAX_CACHE_ENTRIES = 256;
  private static final int MAX_EVICTION_QUEUE_SIZE = Integer.MAX_VALUE;
  private static final int MAX_EVICTION_QUEUE_ENTRIES = Integer.MAX_VALUE;
  private static final int MAX_CACHE_ENTRY_SIZE = Integer.MAX_VALUE;

  private final ActivityManager mActivityManager;

  public DefaultBitmapMemoryCacheParamsSupplier(ActivityManager activityManager) {
    mActivityManager = activityManager;
  }

  @Override
  public MemoryCacheParams get() {
    return new MemoryCacheParams(
        getMaxCacheSize(),
        MAX_CACHE_ENTRIES,
        MAX_EVICTION_QUEUE_SIZE,
        MAX_EVICTION_QUEUE_ENTRIES,
        MAX_CACHE_ENTRY_SIZE);
  }

  private int getMaxCacheSize() {
    final int maxMemory =
        Math.min(mActivityManager.getMemoryClass() * ByteConstants.MB, Integer.MAX_VALUE);
    if (maxMemory < 32 * ByteConstants.MB) {
      return 4 * ByteConstants.MB;
    } else if (maxMemory < 64 * ByteConstants.MB) {
      return 6 * ByteConstants.MB;
    } else {
      // We don't want to use more ashmem on Gingerbread for now, since it doesn't respond well to
      // native memory pressure (doesn't throw exceptions, crashes app, crashes phone)
      if (Build.VERSION.SDK_INT < Build.VERSION_CODES.HONEYCOMB) {
        return 8 * ByteConstants.MB;
      } else {
        return maxMemory / 4;
      }
    }
  }
}

从ActivityManager拿到内存大小,进行计算MemoryCacheParams的缓存策略。再回到上面getBitmapCountingMemoryCache()函数中CountingMemoryCache就是核心了。

public class BitmapCountingMemoryCacheFactory {
  public static CountingMemoryCache<CacheKey, CloseableImage> get(
      Supplier<MemoryCacheParams> bitmapMemoryCacheParamsSupplier,
      MemoryTrimmableRegistry memoryTrimmableRegistry) {

    ValueDescriptor<CloseableImage> valueDescriptor =
        new ValueDescriptor<CloseableImage>() {
          @Override
          public int getSizeInBytes(CloseableImage value) {
            return value.getSizeInBytes();
          }
        };

    CountingMemoryCache.CacheTrimStrategy trimStrategy = new BitmapMemoryCacheTrimStrategy();

    CountingMemoryCache<CacheKey, CloseableImage> countingCache =
        new CountingMemoryCache<>(valueDescriptor, trimStrategy, bitmapMemoryCacheParamsSupplier);

     memoryTrimmableRegistry.registerMemoryTrimmable(countingCache);

    return countingCache;
  }
}

该类构造了BitmapMemoryCacheTrimStrategy策略模式和CountingMemoryCache缓存机制。
ValueDescriptor是什么呢,他是一种数据大小描述器
先看看BitmapMemoryCacheTrimStrategy

/**
 * CountingMemoryCache eviction strategy appropriate for bitmap caches.
 *
 * <p>If run on KitKat or below, then this TrimStrategy behaves exactly as
 * NativeMemoryCacheTrimStrategy. If run on Lollipop, then BitmapMemoryCacheTrimStrategy will trim
 * cache in one additional case: when OnCloseToDalvikHeapLimit trim type is received, cache's
 * eviction queue will be trimmed according to OnCloseToDalvikHeapLimit's suggested trim ratio.
 */
public class BitmapMemoryCacheTrimStrategy implements CountingMemoryCache.CacheTrimStrategy {
  private static final String TAG = "BitmapMemoryCacheTrimStrategy";

  @Override
  public double getTrimRatio(MemoryTrimType trimType) {
    switch (trimType) {
      case OnCloseToDalvikHeapLimit:
        if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
          return MemoryTrimType.OnCloseToDalvikHeapLimit.getSuggestedTrimRatio();
        } else {
          // On pre-lollipop versions we keep bitmaps on the native heap, so no need to trim here
          // as it wouldn't help Dalvik heap anyway.
          return 0;
        }
      case OnAppBackgrounded:
      case OnSystemLowMemoryWhileAppInForeground:
      case OnSystemLowMemoryWhileAppInBackground:
        return 1;
      default:
        FLog.wtf(TAG, "unknown trim type: %s", trimType);
        return 0;
    }
  }
}

根据不同系统返回trim系数因子

/**
 * Layer of memory cache stack responsible for managing eviction of the the cached items.
 *
 * <p> This layer is responsible for LRU eviction strategy and for maintaining the size boundaries
 * of the cached items.
 *
 * <p> Only the exclusively owned elements, i.e. the elements not referenced by any client, can be
 * evicted.
 *
 * @param <K> the key type
 * @param <V> the value type
 */
@ThreadSafe
public class CountingMemoryCache<K, V> implements MemoryCache<K, V>, MemoryTrimmable {
  final CountingLruMap<K, Entry<K, V>> mExclusiveEntries;
  // Contains all the cached items including the exclusively owned ones.
  @GuardedBy("this")
  @VisibleForTesting
  final CountingLruMap<K, Entry<K, V>> mCachedEntries;
  private final ValueDescriptor<V> mValueDescriptor;
  private final CacheTrimStrategy mCacheTrimStrategy;
  // Cache size constraints.
  private final Supplier<MemoryCacheParams> mMemoryCacheParamsSupplier;
  @GuardedBy("this")
  protected MemoryCacheParams mMemoryCacheParams;
  @GuardedBy("this")
  private long mLastCacheParamsCheck;

 public CountingMemoryCache(
      ValueDescriptor<V> valueDescriptor,
      CacheTrimStrategy cacheTrimStrategy,
      Supplier<MemoryCacheParams> memoryCacheParamsSupplier) {
    mValueDescriptor = valueDescriptor;
    mExclusiveEntries = new CountingLruMap<>(wrapValueDescriptor(valueDescriptor));
    mCachedEntries = new CountingLruMap<>(wrapValueDescriptor(valueDescriptor));
    mCacheTrimStrategy = cacheTrimStrategy;
    mMemoryCacheParamsSupplier = memoryCacheParamsSupplier;
    mMemoryCacheParams = mMemoryCacheParamsSupplier.get();
    mLastCacheParamsCheck = SystemClock.uptimeMillis();
  }

  /**
   * Caches the given key-value pair.
   *
   * <p> Important: the client should use the returned reference instead of the original one.
   * It is the caller's responsibility to close the returned reference once not needed anymore.
   *
   * @return the new reference to be used, null if the value cannot be cached
   */
  public CloseableReference<V> cache(final K key, final CloseableReference<V> valueRef, final EntryStateObserver<K> observer) {
    Preconditions.checkNotNull(key);
    Preconditions.checkNotNull(valueRef);

    maybeUpdateCacheParams();

    Entry<K, V> oldExclusive;
    CloseableReference<V> oldRefToClose = null;
    CloseableReference<V> clientRef = null;
    synchronized (this) {
      // remove the old item (if any) as it is stale now
      oldExclusive = mExclusiveEntries.remove(key);
      Entry<K, V> oldEntry = mCachedEntries.remove(key);
      if (oldEntry != null) {
        makeOrphan(oldEntry);
        oldRefToClose = referenceToClose(oldEntry);
      }

      if (canCacheNewValue(valueRef.get())) {
        Entry<K, V> newEntry = Entry.of(key, valueRef, observer);
        mCachedEntries.put(key, newEntry);
        clientRef = newClientReference(newEntry);
      }
    }
    CloseableReference.closeSafely(oldRefToClose);
    maybeNotifyExclusiveEntryRemoval(oldExclusive);

    maybeEvictEntries();
    return clientRef;
  }

  @Nullable
  public CloseableReference<V> get(final K key) {
    Preconditions.checkNotNull(key);
    Entry<K, V> oldExclusive;
    CloseableReference<V> clientRef = null;
    synchronized (this) {
      oldExclusive = mExclusiveEntries.remove(key);
      Entry<K, V> entry = mCachedEntries.get(key);
      if (entry != null) {
        clientRef = newClientReference(entry);
      }
    }
    maybeNotifyExclusiveEntryRemoval(oldExclusive);
    maybeUpdateCacheParams();
    maybeEvictEntries();
    return clientRef;
  }

  public CloseableReference<V> reuse(K key) {
    Preconditions.checkNotNull(key);
    CloseableReference<V> clientRef = null;
    boolean removed = false;
    Entry<K, V> oldExclusive = null;
    synchronized (this) {
      oldExclusive = mExclusiveEntries.remove(key);
      if (oldExclusive != null) {
        Entry<K, V> entry = mCachedEntries.remove(key);
        Preconditions.checkNotNull(entry);
        Preconditions.checkState(entry.clientCount == 0);
        // optimization: instead of cloning and then closing the original reference,
        // we just do a move
        clientRef = entry.valueRef;
        removed = true;
      }
    }
    if (removed) {
      maybeNotifyExclusiveEntryRemoval(oldExclusive);
    }
    return clientRef;
  }

 @Override
  public synchronized boolean contains(Predicate<K> predicate) {
    return !mCachedEntries.getMatchingEntries(predicate).isEmpty();
  }

  /** Trims the cache according to the specified trimming strategy and the given trim type. */
  @Override
  public void trim(MemoryTrimType trimType) {
    ArrayList<Entry<K, V>> oldEntries;
    final double trimRatio = mCacheTrimStrategy.getTrimRatio(trimType);
    synchronized (this) {
      int targetCacheSize = (int) (mCachedEntries.getSizeInBytes() * (1 - trimRatio));
      int targetEvictionQueueSize = Math.max(0, targetCacheSize - getInUseSizeInBytes());
      oldEntries = trimExclusivelyOwnedEntries(Integer.MAX_VALUE, targetEvictionQueueSize);
      makeOrphans(oldEntries);
    }
    maybeClose(oldEntries);
    maybeNotifyExclusiveEntryRemoval(oldEntries);
    maybeUpdateCacheParams();
    maybeEvictEntries();
  }
}

提供了重复使用reuse和简单增删减。
每次cache会根据key释放old数据,把Entry<K, V> newEntry = Entry.of(key, valueRef, observer);生成一个新的加入,observer是观察者,资源释放时候起作用,valueRef就是bitmap资源对象
重点是mCachedEntries和mExclusiveEntries
mCachedEntries是所有Cahce
mExclusiveEntries是Cache不在使用的,挂载到这个cache下,便于后台回收
两者都是Lru的包装算法

/**
 * Map that keeps track of the elements order (according to the LRU policy) and their size.
 */
@ThreadSafe
public class CountingLruMap<K, V> {

  private final ValueDescriptor<V> mValueDescriptor;

  @GuardedBy("this")
  private final LinkedHashMap<K, V> mMap = new LinkedHashMap<>();
  @GuardedBy("this")
  private int mSizeInBytes = 0;

  public CountingLruMap(ValueDescriptor<V> valueDescriptor) {
    mValueDescriptor = valueDescriptor;
  }

  /** Gets the total size in bytes of the elements in the map. */
  public synchronized int getSizeInBytes() {
    return mSizeInBytes;
  }

  /** Gets the key of the first element in the map. */
  @Nullable
  public synchronized K getFirstKey() {
    return mMap.isEmpty() ? null : mMap.keySet().iterator().next();
  }

  /** Gets the all matching elements. */
  public synchronized ArrayList<LinkedHashMap.Entry<K, V>> getMatchingEntries(
      @Nullable Predicate<K> predicate) {
    ArrayList<LinkedHashMap.Entry<K, V>> matchingEntries = new ArrayList<>();
    for (LinkedHashMap.Entry<K, V> entry : mMap.entrySet()) {
      if (predicate == null || predicate.apply(entry.getKey())) {
        matchingEntries.add(entry);
      }
    }
    return matchingEntries;
  }

  /** Returns whether the map contains an element with the given key.  */
  public synchronized boolean contains(K key) {
    return mMap.containsKey(key);
  }

  /** Gets the element from the map. */
  @Nullable
  public synchronized V get(K key) {
    return mMap.get(key);
  }

  /** Adds the element to the map, and removes the old element with the same key if any. */
  @Nullable
  public synchronized V put(K key, V value) {
    // We do remove and insert instead of just replace, in order to cause a structural change
    // to the map, as we always want the latest inserted element to be last in the queue.
    V oldValue = mMap.remove(key);
    mSizeInBytes -= getValueSizeInBytes(oldValue);
    mMap.put(key, value);
    mSizeInBytes += getValueSizeInBytes(value);
    return oldValue;
  }

  /** Removes the element from the map. */
  @Nullable
  public synchronized V remove(K key) {
      V oldValue = mMap.remove(key);
      mSizeInBytes -= getValueSizeInBytes(oldValue);
      return oldValue;
  }

  private int getValueSizeInBytes(V value) {
    return (value == null) ? 0 : mValueDescriptor.getSizeInBytes(value);
  }
}

但尼玛就是LinkedHashMap,也没有看到Lru用在哪里。。。在外面CountingMemoryCache

@ThreadSafe
public class CountingMemoryCache<K, V> implements MemoryCache<K, V>, MemoryTrimmable {
 /**
   * Removes the exclusively owned items until the cache constraints are met.
   *
   * <p> This method invokes the external {@link CloseableReference#close} method,
   * so it must not be called while holding the <code>this</code> lock.
   */
  private void maybeEvictEntries() {
    ArrayList<Entry<K, V>> oldEntries;
    synchronized (this) {
      int maxCount = Math.min(
          mMemoryCacheParams.maxEvictionQueueEntries,
          mMemoryCacheParams.maxCacheEntries - getInUseCount());
      int maxSize = Math.min(
          mMemoryCacheParams.maxEvictionQueueSize,
          mMemoryCacheParams.maxCacheSize - getInUseSizeInBytes());
      oldEntries = trimExclusivelyOwnedEntries(maxCount, maxSize);
      makeOrphans(oldEntries);
    }
    maybeClose(oldEntries);
    maybeNotifyExclusiveEntryRemoval(oldEntries);
  }

  /**
   * Removes the exclusively owned items until there is at most <code>count</code> of them
   * and they occupy no more than <code>size</code> bytes.
   *
   * <p> This method returns the removed items instead of actually closing them, so it is safe to
   * be called while holding the <code>this</code> lock.
   */
  @Nullable
  private synchronized ArrayList<Entry<K, V>> trimExclusivelyOwnedEntries(int count, int size) {
    count = Math.max(count, 0);
    size = Math.max(size, 0);
    // fast path without array allocation if no eviction is necessary
    if (mExclusiveEntries.getCount() <= count && mExclusiveEntries.getSizeInBytes() <= size) {
      return null;
    }
    ArrayList<Entry<K, V>> oldEntries = new ArrayList<>();
    while (mExclusiveEntries.getCount() > count || mExclusiveEntries.getSizeInBytes() > size) {
      K key = mExclusiveEntries.getFirstKey();
      mExclusiveEntries.remove(key);
      oldEntries.add(mCachedEntries.remove(key));
    }
    return oldEntries;
  }
}

这个2个函数做Lru,计算最大count,然后把LinkerHashMap从第一个开始挪走加入old流程设置flag为Orphans,后台去释放资源,这个count就是如果遇到当前要命中的key,又会重新加入,这个count是从DefaultBitmapMemoryCacheParamsSupplier&MemoryCacheParams得到的

二级缓存

相关文章

  • Fresco 缓存策略管理源码分析(一)

    所有的image开源框架,都有自己的缓存策略,一级快速内存映射,二级磁盘映射,三级网络下载映射。我们还是继续研究F...

  • Fresco 缓存策略管理源码分析(二)

    前面介绍了一级缓存,现在看二级缓存,需要request sumbit请求带入。你可能不熟悉界面代码,需要看Fres...

  • Fresco图片显示原理浅析

    (第一篇)Fresco架构设计赏析 (第二篇)Fresco缓存架构分析 本文是Fresco源码分析系列第三篇文章,...

  • Fresco源码分析-Fresco初始化

    本文为分析Fresco源码第一篇,基于fresco 1.8.1。 Fresco官网对于Fresco设计的基本概述 ...

  • 浅谈Fresco编码图片缓存

    (第一篇)Fresco架构设计赏析 (第二篇)Fresco缓存架构分析 (第三篇)Fresco图片显示原理浅析 通...

  • Fresco源码分析之Controller

    如果你是第一次看我的Fresco的源码分析系列文章,这里强烈推荐你先阅读我的前面两篇文章Fresco源码分析之Dr...

  • Fresco架构设计赏析

    本文是Fresco源码分析系列的开篇,主要分析Fresco的整体架构、各个组成模块的功能以及图片加载流程,希望通过...

  • 2019Android面试Fresco架构详解

    本文是Fresco源码分析系列的开篇,主要分析Fresco的整体架构、各个组成模块的功能以及图片加载流程,希望通过...

  • Fresco源码分析(一)

    Fresco学习中文地址:Fresco中文学习 Fresco Javadoc地址:Javadoc Fresco初始...

  • Fresco缓存设计分析

    (第一篇)Fresco架构设计赏析 本文是Fresco源码分析系列第二篇文章,主要来看一下Fresco中有关图片缓...

网友评论

  • Leo_Zheng:LinkedHashMap是有序的,内部实现了LRU,原来看Picasso源码时发现同样是这么用的

本文标题:Fresco 缓存策略管理源码分析(一)

本文链接:https://www.haomeiwen.com/subject/xjkibttx.html