相关系数折线图通常显示
两个变量之间的相关性强度和方向
。横轴代表一个变量,纵轴代表另一个变量,折线代表两个变量之间的相关系数的变化。当相关系数为正时,折线向上走,表示正相关关系;当相关系数为负时,折线向下走,表示负相关关系;当相关系数接近0时,折线基本水平,表示无相关关系。这种图表可以帮助我们直观地了解两个变量之间的关系。
![](https://img.haomeiwen.com/i25274977/e6cde81d5f9a5c08.png)
![](https://img.haomeiwen.com/i25274977/a3ab6c80a63f6ffe.png)
代码部分
###长度
p1<-ggplot(data=a, aes(x=length, y=Total,color = Group))+geom_point()+
theme_minimal()+geom_smooth(method = "lm", se = TRUE)+annotate("text", x = min(a$length), y = max(a$Total), label = paste("R =", round(correlation, 2)), hjust = 0, vjust = 1) +theme_bw() +theme(panel.grid=element_blank())+ylab("NLR Number")+xlab("Gene length")
p1
###基因
p2<-ggplot(data=a, aes(x=gene, y=Total,color = Group))+geom_point()+
theme_minimal()+geom_smooth(method = "lm", se = TRUE)+annotate("text", x = min(a$length), y = max(a$Total), label = paste("R =", round(correlation, 2)), hjust = 0, vjust = 1) +theme_bw() +theme(panel.grid=element_blank())+ylab("NLR Number")+xlab("Gene Number")
p2
![](https://img.haomeiwen.com/i25274977/2d834626b4cef58a.png)
添加相关性lab
###所有
correlation <- cor(a$Gene, a$Total)
###分组
correlation <- lapply(split(a, a$Group), function(a) round(cor(a$Gene, a$Total), 2))
# 定义每个Group的位置和颜色
position <- c( 2, 4, 6, 8, 10) # 不同Group的位置
group_colors <- c("red", "blue", "green", "purple", "orange")
p1 <- ggplot(data = a, aes(x = Gene, y = Total, color = Group)) +
geom_point() +
geom_smooth(method = "lm", formula = y ~ x, se = TRUE) +
scale_color_manual(values = group_colors) + # 指定分组颜色
theme_minimal() +
theme_bw() +
theme(panel.grid=element_blank()) +
ylab("NLR Number") +
xlab("Gene Number")
p1
# 为每个Group添加相关系数标签
for(i in 1:5) {
p1 <- p1 + annotate("text", x = min(a$Gene), y = max(a$Total),
label = paste("R =", correlation[i]), hjust = 0, vjust = position[i],
color = group_colors[i]) # 使用分组颜色
}
p1
![](https://img.haomeiwen.com/i25274977/5f63fb79da2412b2.png)
网友评论