美文网首页
face_recognition 实时人脸识别

face_recognition 实时人脸识别

作者: 梁睿坤 | 来源:发表于2018-06-13 15:50 被阅读486次

    目标

    • 识别进入摄像头的人是谁

    face_recognition

    face_recognition 是github上一个非常有名气的人脸识别开源工具包,我们可以通过以下指令安装到python环境内

    $ pip install face_recognition
    

    代码的设计思路

    加载认识的人脸图

    ray_image = face_recognition.load_image_file("ray.jpg")
    ray_face_encoding = face_recognition.face_encodings(ray_image)[0]
    

    将认识的人脸变量加到数组内

    known_face_encodings = [ ray_face_encoding ]
    known_face_names = [ "Ray" ]
    

    全部代码如下所示:

    import face_recognition
    import cv2
    
    video_capture = cv2.VideoCapture(0)
    
    ray_image = face_recognition.load_image_file("ray.jpg")
    ray_face_encoding = face_recognition.face_encodings(ray_image)[0]
    
    pinky_image = face_recognition.load_image_file("pinky.jpg")
    pinky_face_encoding = face_recognition.face_encodings(ray_image)[0]
    
    # Create arrays of known face encodings and their names
    known_face_encodings = [
        ray_face_encoding,
        pinky_face_encoding
    ]
    known_face_names = [
        "Ray",
        "Pinky"
    ]
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    face_names = []
    process_this_frame = True
    
    while True:
        # Grab a single frame of video
        ret, frame = video_capture.read()
    
        # Resize frame of video to 1/4 size for faster face recognition processing
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
    
        # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
        rgb_small_frame = small_frame[:, :, ::-1]
    
        # Only process every other frame of video to save time
        if process_this_frame:
            # Find all the faces and face encodings in the current frame of video
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
    
            face_names = []
            for face_encoding in face_encodings:
                # See if the face is a match for the known face(s)
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                name = "Unknown"
    
                # If a match was found in known_face_encodings, just use the first one.
                if True in matches:
                    first_match_index = matches.index(True)
                    name = known_face_names[first_match_index]
    
                face_names.append(name)
    
        process_this_frame = not process_this_frame
    
    
        # Display the results
        for (top, right, bottom, left), name in zip(face_locations, face_names):
            # Scale back up face locations since the frame we detected in was scaled to 1/4 size
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4
    
            # Draw a box around the face
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
    
            # Draw a label with a name below the face
            cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
    
        # Display the resulting image
        cv2.imshow('Video', frame)
    
        # Hit 'q' on the keyboard to quit!
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    # Release handle to the webcam
    video_capture.release()
    cv2.destroyAllWindows()
    

    相关文章

      网友评论

          本文标题:face_recognition 实时人脸识别

          本文链接:https://www.haomeiwen.com/subject/xsprdftx.html