美文网首页
C++ opengl 绘制立方体,使用点光源,平行光,聚光等

C++ opengl 绘制立方体,使用点光源,平行光,聚光等

作者: miniminiming | 来源:发表于2018-04-04 14:38 被阅读0次

    关于光

    一个物体最后显示出来的颜色,也就是我们在片段着色器中最后混合出来的FragColor
    环境光、漫反射光、镜面光这三种光是由材料和光照的对应的三种成分组成的,材料在贴图时它是纹理。
    所以我们在模拟点光源,模拟聚光灯的时候,都可以通过更改光照的这三种属性来达到类似的效果。

    opengl_color_light_picture.cpp

    #include <iostream>
    #include <cmath>
    
    #include "glad/glad.h"
    #include "GLFW/glfw3.h"
    #include "utils/Shader.h"
    //图片工具库
    #include "utils/stb_image.h"
    
    //矩阵工具库
    #include "utils/glm/glm.hpp"
    #include "utils/glm/gtc/matrix_transform.hpp"
    #include "utils/glm/gtc/type_ptr.hpp"
    #include "utils/Camera.h"
    
    void framebuffer_size_callback(GLFWwindow *window, int width, int height);
    
    void processInput(GLFWwindow *window);
    
    void loadTexture(unsigned int *texture, const char *path);
    
    unsigned int loadTextureReal(char const *path);
    
    void mouse_callback(GLFWwindow *window, double xpos, double ypos);
    
    void scroll_callback(GLFWwindow *window, double xoffset, double yoffset);
    
    
    glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 3.0f);//相机位置
    glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f);//面对的方向,以这个为尺度更改观看的,其实就是单位速度
    glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f);//头顶的方向
    
    float deltaTime = 0.0f; //当前帧与上一帧的时间差
    float lastFrameTime = 0.0f;//上一帧的时间
    
    float lastX = 300;
    float lastY = 300;
    
    
    Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
    glm::vec3 lightPos(1.2f, 1.0f, 2.0f);
    
    
    /**
     * 顶点数组对象:Vertex Array Object,VAO
     * 顶点缓冲对象:Vertex Buffer Object,VBO
     * 索引缓冲对象:Element Buffer Object,EBO或Index Buffer Object,IBO
     * @return
     */
    int main() {
        glfwInit();
        glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
        glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
        glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GLFW_OPENGL_CORE_PROFILE);
    
        //第三个参数是标题
        GLFWwindow *window = glfwCreateWindow(600, 600, "LearnOpengl", NULL, NULL);
        if (window == NULL) {
            std::cout << "Fail to create GLFW window" << std::endl;
            glfwTerminate();
            return -1;
        }
        glfwMakeContextCurrent(window);
        //奇特的写法,本应是个函数,写出来却像个变量,连参数都不需要传了
        if (!gladLoadGLLoader((GLADloadproc) glfwGetProcAddress)) {
            std::cout << "File to initialize GLAD" << std::endl;
            return -1;
        }
        //使窗口隐藏光标并且捕捉它
        glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
        //使用回调
        glfwSetCursorPosCallback(window, mouse_callback);
    
        glViewport(0, 0, 600, 600);//指定视口大小,跟java一样
        glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
        glfwSetScrollCallback(window, scroll_callback);
    
        //加载纹理
        unsigned int diffuseMap, diffuse_specular_Map, matrixMap;
        const char *path1 = "D:\\cl_workspace\\TestOpengl\\resource\\container2.jpg";
        const char *path2 = "D:\\cl_workspace\\TestOpengl\\resource\\container2_specular.png";
        const char *path3 = "D:\\cl_workspace\\TestOpengl\\resource\\matrix.jpg";
    //    //两个都要传递引用,这样函数更改的值才是上面的值
    //    loadTexture(&diffuseMap, path1);
    //    loadTexture(&diffuse_specular_Map, path2);
    //    loadTexture(&matrixMap, path3);
        diffuseMap = loadTextureReal(path1);
        diffuse_specular_Map = loadTextureReal(path2);
        matrixMap = loadTextureReal(path3);
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, diffuseMap);
        glActiveTexture(GL_TEXTURE1);
        glBindTexture(GL_TEXTURE_2D, diffuse_specular_Map);
        glActiveTexture(GL_TEXTURE2);
        glBindTexture(GL_TEXTURE_2D, matrixMap);
    
    
        //箱子
        Shader lightingShader("D:\\cl_workspace\\TestOpengl\\shader\\vertex_shader_6.glsl",
                              "D:\\cl_workspace\\TestOpengl\\shader\\fragment_shader_6.glsl");
        //光源
        Shader lampShader("D:\\cl_workspace\\TestOpengl\\shader\\vertex_shader_4.glsl",
                          "D:\\cl_workspace\\TestOpengl\\shader\\fragment_shader_4.glsl");
    
    
        //立方体
        float vertices[] = {
                // positions          // normals           // texture coords
                -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
                0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f,
                0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f,
                0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f,
                -0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,
                -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
    
                -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
                0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f,
                0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
                0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
                -0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f,
                -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
    
                -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
                -0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
                -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
                -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
                -0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
                -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
    
                0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
                0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
                0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
                0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
                0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
                0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
    
                -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f,
                0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f,
                0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
                0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
                -0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f,
                -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f,
    
                -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
                0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f,
                0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
                0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
                -0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
                -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f
        };
    
        glm::vec3 cubePositions[] = {
                glm::vec3(0.0f, 0.0f, 0.0f),
                glm::vec3(2.0f, 5.0f, -15.0f),
                glm::vec3(-1.5f, -2.2f, -2.5f),
                glm::vec3(-3.8f, -2.0f, -12.3f),
                glm::vec3(2.4f, -0.4f, -3.5f),
                glm::vec3(-1.7f, 3.0f, -7.5f),
                glm::vec3(1.3f, -2.0f, -2.5f),
                glm::vec3(1.5f, 2.0f, -2.5f),
                glm::vec3(1.5f, 0.2f, -1.5f),
                glm::vec3(-1.3f, 1.0f, -1.5f)
        };
    
        //创建VBO,绑定数据,绑定VAO
        //明白了,VBO顶点缓冲区,是用来存放数据的,而VAO是调用数据的索引
        unsigned int cubeVAO;
        glGenVertexArrays(1, &cubeVAO);
        glBindVertexArray(cubeVAO);
    
        unsigned int VBO;
        glGenBuffers(1, &VBO);//&符号应该是传引用对象的意思,不然会传值进去
        glBindBuffer(GL_ARRAY_BUFFER, VBO);//这一步就是给GL_ARRAY_BUFFER绑定数据了
        glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
    
        //做的时间长,反而忘了。。。这是给着色器里面的某个location设置值的
        glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void *) (0));
        glEnableVertexAttribArray(0);
        glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void *) (3 * sizeof(float)));
        glEnableVertexAttribArray(1);
        glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void *) (6 * sizeof(float)));
        glEnableVertexAttribArray(2);
    
    
        //当调用glBindVertexArray(lightVAO)后,再调用glBindBuffer(GL_ARRAY_BUFFER, VBO)
        //相当于把缓冲区中的数据设置给了lightVAO,上面的顺序一定不能变
        unsigned int lightVAO;
        glGenVertexArrays(1, &lightVAO);
        glBindVertexArray(lightVAO);
    
        glBindBuffer(GL_ARRAY_BUFFER, VBO);
        glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void *) (0));
        glEnableVertexAttribArray(0);
    
        //循环绘制
        while (!glfwWindowShouldClose(window)) {//判断界面是否关闭,没关闭就循环绘制
            processInput(window);
    
            //记录deltaTime
            float currentFrame = glfwGetTime();
            deltaTime = currentFrame - lastFrameTime;
            lastFrameTime = currentFrame;
    
    
            //同java
            glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
            glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);//如果开启了深度测试,这里就要把GL_DEPTH_BUFFER_BIT也清空
    
            //让光源随着时间的变化而改变位置
    //        lightPos = glm::vec3(1.2f * sin(glfwGetTime()), 1.0f * sin(glfwGetTime()), 2.0f);
    
            glm::vec3 lightColor;
            lightColor.x = sin(glfwGetTime() * 2.0f);
            lightColor.y = sin(glfwGetTime() * 0.7f);
            lightColor.z = sin(glfwGetTime() * 1.3f);
    
            glm::vec3 diffuseColor = lightColor * glm::vec3(0.5f);//降低影响
            glm::vec3 ambientColor = diffuseColor * glm::vec3(0.2f);//环境光,更低
            //开启深度测试
            glEnable(GL_DEPTH_TEST);
    
            //lighting其实是物体。。。
            lightingShader.use();
            lightingShader.setVec3("viewPos", camera.Position);//观察位置
    
            //设置各个光照的强度
    //        lightingShader.setVec3("light.ambient", ambientColor);
    //        lightingShader.setVec3("light.diffuse", diffuseColor);
            lightingShader.setVec3("light.ambient", 0.1f, 0.1f, 0.1f);
            lightingShader.setVec3("light.diffuse", 0.8f, 0.8f, 0.8f);
            lightingShader.setVec3("light.specular", 1.0f, 1.0f, 1.0f);//镜面反射
    //        lightingShader.setVec3("light.direction", -0.2f, -1.0f, -0.3f);//定向光
    //        lightingShader.setVec3("light.position", lightPos);//点光源位置
            //聚光灯
            lightingShader.setVec3("light.position",  camera.Position);//摄像机位置就是光源的来源
            lightingShader.setVec3("light.direction",camera.Front);//聚光灯正前方
            lightingShader.setFloat("light.cutoff", glm::cos(glm::radians(12.5f)));//聚光灯的切光角
            lightingShader.setFloat("light.outerCutOff", glm::cos(glm::radians(17.5f)));//聚光灯的切光角
    
            //光的衰减参数
    //        lightingShader.setFloat("light.constant", 1.0f);
    //        lightingShader.setFloat("light.linear", 0.09f);
    //        lightingShader.setFloat("light.quadratic", 0.032f);
    
    
            lightingShader.setInt("material.diffuse", 0);//绑定纹理?用0即可,0对应GL_TEXTURE0
            lightingShader.setInt("material.specular", 1);//绑定纹理?用1即可,1对应GL_TEXTURE1
            lightingShader.setInt("material.emission", 2);
    //        lightingShader.setVec3("material.specular", 0.5f, 0.5f, 0.5f);
            lightingShader.setFloat("material.shininess", 64.0f);
    
    
            glm::mat4 model = glm::mat4();
            glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), 1.0f, 0.1f, 100.0f);
            glm::mat4 view = camera.GetViewMatrix();
            lightingShader.setMat4("view", view);
            lightingShader.setMat4("projection", projection);
    
            glBindVertexArray(cubeVAO);
            for (unsigned int i = 0; i < 10; i++) {
                model = glm::translate(model, cubePositions[i]);
                float angle = 20.0f * i;
                model = glm::rotate(model, glm::radians(angle), glm::vec3(1.0f, 0.3f, 0.5f));
                lightingShader.setMat4("model", model);
    
                glDrawArrays(GL_TRIANGLES, 0, 36);
            }
    
            lampShader.use();
            lampShader.setMat4("view", view);
            lampShader.setMat4("projection", projection);
            model = glm::mat4();
            model = glm::translate(model, lightPos);
            model = glm::scale(model, glm::vec3(0.2f));
            lampShader.setMat4("model", model);
    
            glBindVertexArray(lightVAO);
            glDrawArrays(GL_TRIANGLES, 0, 36);
    
    
            //双缓冲机制,前缓冲保存着最终输出的图像,后缓冲则进行绘制,绘制完成以后与前缓冲交换,就会立即显示
            //单缓冲会存在闪烁问题
            glfwSwapBuffers(window);//交换颜色缓冲
            glfwPollEvents();//检查有没有什么触发事件,鼠标键盘等,并调用相关的回调
    
        }
    
        //回收数据
        glDeleteVertexArrays(1, &cubeVAO);
        glDeleteVertexArrays(1, &lightVAO);
        glDeleteBuffers(1, &VBO);
    
        glfwTerminate();//结束绘制
        return 0;
    }
    
    //窗口尺寸改变的回调
    void framebuffer_size_callback(GLFWwindow *window, int width, int height) {
        glViewport(0, 0, width, height);
    }
    
    void processInput(GLFWwindow *window) {
        if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
            glfwSetWindowShouldClose(window, true);
    
        if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
            camera.ProcessKeyboard(FORWARD, deltaTime);
        if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
            camera.ProcessKeyboard(BACKWARD, deltaTime);
        if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
            camera.ProcessKeyboard(LEFT, deltaTime);
        if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
            camera.ProcessKeyboard(RIGHT, deltaTime);
    }
    
    //*代表引用传递,传参数时要用&符号,而取*里的值则需要*p
    void loadTexture(unsigned int *texture, const char *path) {
        glGenTextures(1, texture);
    //    对*p赋值,从而改变p所指的地址上说保存的值
        //*textrue就能表示这个内存地址上表示的值
        glBindTexture(GL_TEXTURE_2D, *texture);//GL_TEXTURE_2D同样,它也是一个目标
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);//设置环绕和过滤方式
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
        //加载纹理,第三个参数是颜色通道的个数
        int width, height, nrChannels;
        stbi_set_flip_vertically_on_load(true);
        //图片
        unsigned char *data = stbi_load(path, &width,
                                        &height, &nrChannels, 0);
    
        //第二个参数为多级渐远纹理的级别,0为基本级别,第三个参数为指定纹理存储为何种格式
        //第六个总是设置为0,第七第八定义源图的格式和数据类型
        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
        glGenerateMipmap(GL_TEXTURE_2D);
        //释放图像内存
        stbi_image_free(data);
    }
    
    
    unsigned int loadTextureReal(char const *path) {
        unsigned int textureID;
        glGenTextures(1, &textureID);
    
        int width, height, nrComponents;
        unsigned char *data = stbi_load(path, &width, &height, &nrComponents, 0);
        if (data) {
            GLenum format;
            if (nrComponents == 1)
                format = GL_RED;
            else if (nrComponents == 3)
                format = GL_RGB;
            else if (nrComponents == 4)
                format = GL_RGBA;
    
            glBindTexture(GL_TEXTURE_2D, textureID);
            glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
            glGenerateMipmap(GL_TEXTURE_2D);
    
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    
            stbi_image_free(data);
        } else {
            std::cout << "Texture failed to load at path: " << path << std::endl;
            stbi_image_free(data);
        }
    
        return textureID;
    }
    
    bool firstMouse = true;
    
    void mouse_callback(GLFWwindow *window, double xpos, double ypos) {
        if (firstMouse) {
            lastX = xpos;
            lastY = ypos;
            firstMouse = false;
        }
    
        float xoffset = xpos - lastX;
        float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top
    
        lastX = xpos;
        lastY = ypos;
    
        camera.ProcessMouseMovement(xoffset, yoffset);
    }
    
    //滚轮的回调
    void scroll_callback(GLFWwindow *window, double xoffset, double yoffset) {
        camera.ProcessMouseScroll(yoffset);
    }
    
    #version 330 core
    out vec4 FragColor;
    
    //uniform vec3 lightPos;
    uniform vec3 viewPos;
    
    in vec3 Normal;
    in vec3 FragPos;
    
    struct Material {
        //环境光颜色几乎在所有情况下都等于漫反射颜色,所以不需要环境光,只用漫反射即可
    //    vec3 ambient;//环境光,一般是物体颜色
    //    vec3 diffuse;//漫反射光照下物体的颜色
        sampler2D diffuse;
    //    vec3 specular;//镜面光照对物体的颜色影响
        sampler2D specular;
        sampler2D emission;//放射光的贴图
        float shininess;//反光度
    };
    
    //一个光源对它的ambient、diffuse和specular光照有着不同的强度
    struct Light {
        vec3 position;//光源位置,一般只有点光源用
        vec3 direction;//定向光
        float cutoff;//聚光灯的切光角,处于角度之外的东西都不会被照亮
        float outerCutOff;//外光切
    
        vec3 ambient;
        vec3 diffuse;
        vec3 specular;
    
        float constant;
        float linear;
        float quadratic;
    };
    
    //之前都是用灯光来设定环境光,漫反射光和镜面反射光,现在我们要分开设置这些材质
    uniform Material material;
    
    uniform Light light;
    
    //上面用两个纹理,下面用一个接收?并不是,这个是纹理的坐标
    //而纹理的对象,是设置给了Light结构体里的diffuse和specular
    in vec2 TexCoords;
    
    void main() {
            //距离光源的距离
    //        float distance = length(light.position - FragPos);
            //光的衰减公式,attenuation就是最后剩下的程度
    //        float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * distance * distance);
    
                vec3 lightDir = normalize(light.position - FragPos);
    
               //环境光,现在设置为与漫反射同样的值
               vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords));
    
               //漫反射,先对向量进行标准化
               vec3 norm = normalize(Normal);
               //依据法向量计算光源对当前片段的漫反射影响
               float diff = max(dot(norm, lightDir),0.0);//点积,算出来的是投影长度,夹角越小,越接近1,越亮
               vec3 diffuse = light.diffuse * (diff * vec3(texture(material.diffuse, TexCoords)));//混合纹理
    
               //镜面反射
               vec3 viewDir = normalize(viewPos - FragPos);//片段位置到摄像机位置的向量,也就是视线方向
               //反射向量,reflect函数要求第一个向量是从光源指向片段位置的向量
               vec3 reflectDir = reflect(-lightDir,norm);
               //点乘,避免负值,取32次幂,32是高光的反光度,这个点乘肯定小于1,32次方,那就更小了
               //一个物体的反光度越高,反射光的能力越强,散射得越少,高光点就会越小,可以理解
               //反光度material.shininess,必须是float类型,否则报错
               //镜面光贴图我们可以可以对物体设置大量的细节,比如物体的哪些部分需要有闪闪发光的属性,我们甚至可以设置它们对应的强度。
               //镜面光贴图能够在漫反射贴图之上给予我们更高一层的控制
               float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
               vec3 specular = light.specular * (spec * vec3(texture(material.specular,TexCoords)));
    
               //放射光贴图,这个.rgb跟前面的vec3()转是一个效果,都是把vec4转成vec3
    //           vec3 emission = texture(material.emission, TexCoords).rgb;
    
               //将环境光,漫反射光,镜面反射光作用于物体
        //       vec3 result = ambient + diffuse + specular + emission;
                //使用衰减
        //        ambient *= attenuation;
        //        diffuse *= attenuation;
        //        specular *= attenuation;
    
            //设置一个聚光的衰减效果,需要设置内光切和外光切,在内外光切之间,光线往外逐渐衰减
            float theta = dot(lightDir,normalize(-light.direction));
            float epsilon = light.cutoff - light.outerCutOff;//内外光切cos值的差
            //(theta - light.outerCutOff) / epsilon 就是光在内光切和外光切之间的衰减公式
            float intensity = clamp((theta - light.outerCutOff) / epsilon,0.0,1.0);//clamp约束第一个参数值在0到1之间
           //用衰减值来处理漫反射和镜面光
            diffuse *= intensity;
            specular *= intensity;
            //当我用使用聚光的内光切和外光切对光线进行衰减时,就不用if else来区分了,超过外光切的公式已经把它弄成0了
            vec3 result = ambient + diffuse + specular ;
    //        if(theta > light.cutoff){//如果在聚光灯内,使用正常的光照
                    //result = ambient + diffuse + specular ;
    //        }else{
    //              //否则只显示环境光
    //             result =light.ambient * texture(material.diffuse, TexCoords).rgb;
    //        }
             //混合光照颜色
            FragColor = vec4(result, 1.0);
    
    }
    
    #version 330 core
    
    layout (location = 0) in vec3 aPos;//位置变量的属性位置值为0
    layout (location = 1) in vec3 aNormal;//法向量
    layout (location = 2) in vec2 aTexCoords;//纹理
    
    uniform mat4 model;
    uniform mat4 view;
    uniform mat4 projection;
    
    
    
    out vec3 Normal;
    out vec3 FragPos;
    out vec2 TexCoords;
    
    void main() {
        gl_Position = projection*view*model*vec4(aPos,1.0);
        FragPos = vec3(model * vec4(aPos,1.0));
        //把法向量也转换为世界空间坐标,所以需要一个法线矩阵
        //由于我们只在世界空间中进行操作(不是在观察空间),我们只使用模型矩阵
        //使用inverse和transpose函数修改model生成这个法线矩阵,必须是3x3的
        mat3 normalMatrix =  mat3(transpose(inverse(model)));
        Normal = normalMatrix * aNormal;
        TexCoords = aTexCoords;
    }
    

    相关文章

      网友评论

          本文标题:C++ opengl 绘制立方体,使用点光源,平行光,聚光等

          本文链接:https://www.haomeiwen.com/subject/yemkhftx.html