在Android中使用FlatBuffers

作者: hanpfei | 来源:发表于2016-12-07 19:58 被阅读828次

    总览

    先来看一下 FlatBuffers 项目已经为我们提供了什么,而我们在将 FlatBuffers 用到我们的项目中时又需要做什么的整体流程。如下图:

    :.jpg

    在使用 FlatBuffers 时,我们需要以特殊的格式定义我们的结构化数据,保存为 .fbs 文件。FlatBuffers 项目为我们提供了编译器,可用于将 .fbs 文件编译为Java文件,C++文件等,以用于我们的项目。FlatBuffers 编译器在我们的开发机,比如Ubuntu,Mac上运行。这些源代码文件是基于 FlatBuffers 提供的Java库生成的,同时我们也需要利用这个Java库的一些接口来序列化或解析数据。

    我们将 FlatBuffers 编译器生成的Java文件及 FlatBuffers 的Java库导入我们的项目,就可以用 FlatBuffers 来对我们的结构化数据执行序列化和反序列化了。尽管每次手动执行 FlatBuffers 编译器生成Java文件非常麻烦,但不像 Protocol Buffers 那样,当前还没有Google官方提供的gradle插件可用。不过,我们这边开发了一个简单的 FlatBuffers gradle插件,后面会简单介绍一下,欢迎大家使用。

    接下来我们更详细地看一下上面流程中的各个部分。

    下载、编译 FlatBuffers 编译器

    我们可以在如下位置:

    https://github.com/google/flatbuffers/releases
    

    获取官方发布的打包好的版本。针对Windows平台有编译好的可执行安装文件,对其它平台还是打包的源文件。我们也可以指向clone repo的代码,进行手动编译。这里我们从GitHub上clone代码并手动编译编译器:

    $ git clone https://github.com/google/flatbuffers.git
    Cloning into 'flatbuffers'...
    remote: Counting objects: 7340, done.
    remote: Compressing objects: 100% (46/46), done.
    remote: Total 7340 (delta 16), reused 0 (delta 0), pack-reused 7290
    Receiving objects: 100% (7340/7340), 3.64 MiB | 115.00 KiB/s, done.
    Resolving deltas: 100% (4692/4692), done.
    Checking connectivity... done.
    

    下载代码之后,我们需要用cmake工具来为flatbuffers生成Makefile文件并编译:

    $ cd flatbuffers/
    $ cmake CMakeLists.txt 
    -- The C compiler identification is AppleClang 7.3.0.7030031
    -- The CXX compiler identification is AppleClang 7.3.0.7030031
    -- Check for working C compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/cc
    -- Check for working C compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/cc -- works
    -- Detecting C compiler ABI info
    -- Detecting C compiler ABI info - done
    -- Detecting C compile features
    -- Detecting C compile features - done
    -- Check for working CXX compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++
    -- Check for working CXX compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -- works
    -- Detecting CXX compiler ABI info
    -- Detecting CXX compiler ABI info - done
    -- Detecting CXX compile features
    -- Detecting CXX compile features - done
    -- Configuring done
    -- Generating done
    -- Build files have been written to: /Users/netease/Projects/OpenSource/flatbuffers
    $ make && make install
    

    安装之后执行如下命令以确认已经装好:

    $ flatc --version
    flatc version 1.4.0 (Dec  7 2016)
    

    flatc没有为我们提供 --help 选项,不过加了错误的参数时这个工具会为我们展示详细的用法:

    $ flatc --help
    flatc: unknown commandline argument: --help
    usage: flatc [OPTION]... FILE... [-- FILE...]
      --binary     -b Generate wire format binaries for any data definitions.
      --json       -t Generate text output for any data definitions.
      --cpp        -c Generate C++ headers for tables/structs.
      --go         -g Generate Go files for tables/structs.
      --java       -j Generate Java classes for tables/structs.
      --js         -s Generate JavaScript code for tables/structs.
      --csharp     -n Generate C# classes for tables/structs.
      --python     -p Generate Python files for tables/structs.
      --php           Generate PHP files for tables/structs.
      -o PATH            Prefix PATH to all generated files.
      -I PATH            Search for includes in the specified path.
      -M                 Print make rules for generated files.
      --version          Print the version number of flatc and exit.
      --strict-json      Strict JSON: field names must be / will be quoted,
                         no trailing commas in tables/vectors.
      --allow-non-utf8   Pass non-UTF-8 input through parser and emit nonstandard
                         \x escapes in JSON. (Default is to raise parse error on
                         non-UTF-8 input.)
      --defaults-json    Output fields whose value is the default when
                         writing JSON
      --unknown-json     Allow fields in JSON that are not defined in the
                         schema. These fields will be discared when generating
                         binaries.
      --no-prefix        Don't prefix enum values with the enum type in C++.
      --scoped-enums     Use C++11 style scoped and strongly typed enums.
                         also implies --no-prefix.
      --gen-includes     (deprecated), this is the default behavior.
                         If the original behavior is required (no include
                         statements) use --no-includes.
      --no-includes      Don't generate include statements for included
                         schemas the generated file depends on (C++).
      --gen-mutable      Generate accessors that can mutate buffers in-place.
      --gen-onefile      Generate single output file for C#.
      --gen-name-strings Generate type name functions for C++.
      --escape-proto-ids Disable appending '_' in namespaces names.
      --gen-object-api   Generate an additional object-based API.
      --cpp-ptr-type T   Set object API pointer type (default std::unique_ptr)
      --raw-binary       Allow binaries without file_indentifier to be read.
                         This may crash flatc given a mismatched schema.
      --proto            Input is a .proto, translate to .fbs.
      --schema           Serialize schemas instead of JSON (use with -b)
      --conform FILE     Specify a schema the following schemas should be
                         an evolution of. Gives errors if not.
      --conform-includes Include path for the schema given with --conform
        PATH             
    FILEs may be schemas, or JSON files (conforming to preceding schema)
    FILEs after the -- must be binary flatbuffer format files.
    Output files are named using the base file name of the input,
    and written to the current directory or the path given by -o.
    example: flatc -c -b schema1.fbs schema2.fbs data.json
    

    创建 .fbs 文件

    flatc支持将为 Protocol Buffers 编写的 .proto 文件转换为 .fbs 文件,如:

    $ ls
    addressbook.proto
    $ flatc --proto addressbook.proto 
    $ ls -l
    total 16
    -rw-r--r--  1 netease  staff  431 12  7 17:21 addressbook.fbs
    -rw-r--r--@ 1 netease  staff  486 12  1 15:18 addressbook.proto
    

    Protocol Buffers 消息文件中的一些写法,FlatBuffers 编译器还不能很好的支持,如option java_package,option java_outer_classname,和嵌套类。这里我们基于 FlatBuffers 编译器转换的 .proto 文件来获得我们的 .fbs 文件:

    // Generated from addressbook.proto
    
    namespace com.example.tutorial;
    
    enum PhoneType : int {
      MOBILE = 0,
      HOME = 1,
      WORK = 2,
    }
    
    namespace com.example.tutorial;
    
    table Person {
      name:string (required);
      id:int;
      email:string;
      phone:[com.example.tutorial._Person.PhoneNumber];
    }
    
    namespace com.example.tutorial._Person;
    
    table PhoneNumber {
      number:string (required);
      type:int;
    }
    
    namespace com.example.tutorial;
    
    table AddressBook {
      person:[com.example.tutorial.Person];
    }
    
    root_type AddressBook;
    

    可以参考 官方的文档 来了解 .fbs 文件的详细的写法。

    编译 .fbs 文件

    可以通过如下命令编译 .fbs 文件:

    $ flatc --java -o out addressbook.fbs
    

    --java用于指定编译的目标编程语言。-o 参数则用于指定输出文件的路径,如过没有提供则将当前目录用作输出目录。FlatBuffers 编译器按照为不同的数据结构声明的namespace生成目录结构。对于上面的例子,会生成如下的这些文件:

    $ find out
    p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Menlo}span.s1 {font-variant-ligatures: no-common-ligatures}
    
    $ find out/
    out/
    out//com
    out//com/example
    out//com/example/tutorial
    out//com/example/tutorial/_Person
    out//com/example/tutorial/_Person/PhoneNumber.java
    out//com/example/tutorial/AddressBook.java
    out//com/example/tutorial/Person.java
    out//com/example/tutorial/PhoneType.java
    

    在Android项目中使用 FlatBuffers

    我们将前面由 .fbs 文件生成的Java文件拷贝到我们的项目中。我们前面提到的,FlatBuffers 的Java库比较薄,当前并没有发不到jcenter这样的maven仓库中,因而我们需要将这部分代码也拷贝到我们的额项目中。FlatBuffers 的Java库在其repo仓库的 java 目录下。引入这些文件之后,我们的代码结构如下:

    添加访问 FlatBuffers 的类:

    package com.netease.volleydemo;
    
    import com.example.tutorial.AddressBook;
    import com.example.tutorial.Person;
    import com.example.tutorial._Person.PhoneNumber;
    import com.google.flatbuffers.FlatBufferBuilder;
    
    import java.nio.ByteBuffer;
    
    /**
     * Created by hanpfei0306 on 16-12-5.
     */
    
    public class AddressBookFlatBuffers {
        public static byte[] encodeTest(String[] names) {
            FlatBufferBuilder builder = new FlatBufferBuilder(0);
    
            int[] personOffsets = new int[names.length];
    
            for (int i = 0; i < names.length; ++ i) {
                int name = builder.createString(names[i]);
                int email = builder.createString("zhangsan@gmail.com");
    
                int number1 = builder.createString("0157-23443276");
                int type1 = 1;
                int phoneNumber1 = PhoneNumber.createPhoneNumber(builder, number1, type1);
    
                int number2 = builder.createString("136183667387");
                int type2 = 0;
                int phoneNumber2 = PhoneNumber.createPhoneNumber(builder, number2, type2);
    
                int[] phoneNubers = new int[2];
                phoneNubers[0] = phoneNumber1;
                phoneNubers[1] = phoneNumber2;
    
                int phoneNumbersPos = Person.createPhoneVector(builder, phoneNubers);
    
                int person = Person.createPerson(builder, name, 13958235, email, phoneNumbersPos);
    
                personOffsets[i] = person;
            }
            int persons = AddressBook.createPersonVector(builder, personOffsets);
    
            AddressBook.startAddressBook(builder);
            AddressBook.addPerson(builder, persons);
            int eab = AddressBook.endAddressBook(builder);
            builder.finish(eab);
            byte[] data = builder.sizedByteArray();
            return data;
        }
    
        public static byte[] encodeTest(String[] names, int times) {
            for (int i = 0; i < times - 1; ++ i) {
                encodeTest(names);
            }
            return encodeTest(names);
        }
    
        public static AddressBook decodeTest(byte[] data) {
            AddressBook addressBook = null;
            ByteBuffer byteBuffer = ByteBuffer.wrap(data);
            addressBook = AddressBook.getRootAsAddressBook(byteBuffer);
            return addressBook;
        }
    
        public static AddressBook decodeTest(byte[] data, int times) {
            AddressBook addressBook = null;
            for (int i = 0; i < times; ++ i) {
                addressBook = decodeTest(data);
            }
            return addressBook;
        }
    }
    

    使用 flatbuf-gradle-plugin

    我们有开发一个 FlatBuffers 的gradle插件,以方便开发,项目位置。这个插件的设计有参考Google的protobuf-gradle-plugin,功能与用法也与protobuf-gradle-plugin类似。在这个项目中,我们也有为 FlatBuffers 的Java库创建一个module。

    编译并发布flatbuf-gradle-plugin

    从github上下载代码:

    $ git clone https://github.com/hanpfei/flatbuffers.git
    

    然后将代码导入Android Studio,将看到如下的代码结构:

    app 模块是一个demo程序,flatbuf-gradle-plugin 模块是 FlatBuffers 的gradle插件,而flatbuffers模块则是 FlatBuffers 的Java库。

    为了使用 flatbuf-gradle-plugin,可以将插件发布到本地文件系统。这可以通过修改flatbuf-gradle-plugin/build.gradle来完成,修改 uploadArchives task 的 repository 指向本地文件系统,如:

    uploadArchives {
        repositories {
            mavenDeployer {
                pom.groupId = 'com.netease.hearttouch'
                pom.artifactId = 'ht-flatbuf-gradle-plugin'
                pom.version = '0.0.1-SNAPSHOT'
                repository(url: 'file:///Users/netease/Projects/CorpProjects/ht-flatbuffers/app/plugin')
            }
        }
    }
    

    执行uploadArchives task,编译并发布flatbuf-gradle-plugin到本地文件系统。

    应用flatbuf-gradle-plugin

    修改应用程序的 build.gradle 以应用flatbuf-gradle-plugin

    1. 为buildscript添加对flatbuf-gradle-plugin的依赖:
    buildscript {
        //目前先发布在本地,后面会通过maven进行引用
        repositories {
            maven {
                url "file:///Users/netease/Projects/CorpProjects/ht-flatbuffers/app/plugin"
            }
            jcenter()
            mavenCentral()
        }
        dependencies {
            classpath 'com.netease.hearttouch:ht-flatbuf-gradle-plugin:0.0.1-SNAPSHOT'
        }
    }
    
    1. apply plugin: 'com.android.application'后面应用flatbuf的plugin:
    apply plugin: 'com.android.application'
    apply plugin: 'com.netease.flatbuf'
    
    1. 添加flatbuf块,对flatbuf-gradle-plugin的执行做配置:
    flatbuf {
        flatc {
            path = '/usr/local/bin/flatc'
        }
    
        generateFlatTasks {
            all().each { task ->
                task.builtins {
                    remove java
                }
                task.builtins {
                    java { }
                }
            }
        }
    }
    

    flatc块用于配置 FlatBuffers 编译器,这里我们指定用我们之前手动编译的编译器。
    task.builtins的块必不可少,这个块用于指定我们要为那些编程语言生成代码,这里我们为Java生成代码。

    1. 指定 .fbs 文件的路径
        sourceSets {
            main {
                flat {
                    srcDir 'src/main/flat'
                }
            }
        }
    

    我们将 FlatBuffers 的IDL文件放在src/main/flat目录下。

    这样我们就不用再那么麻烦每次手动执行flatc了。

    FlatBuffers、Protobuf及JSON对比测试

    FlatBuffers相对于Protobuf的表现又如何呢?这里我们用数据说话,对比一下FlatBuffers格式、JSON格式与Protobuf的表现。测试同样用fastjson作为JSON的编码解码工具。

    测试用的数据结构所有的数据结构,Protobuf相关的测试代码,及JSON的测试代码同 在Android中使用Protocol Buffers 一文所述,FlatBuffers的测试代码如上面看到的 AddressBookFlatBuffers

    通过如下的这段代码来执行测试:

        private class ProtoTestTask extends AsyncTask<Void, Void, Void> {
            private static final int BUFFER_LEN = 8192;
    
            private void compress(InputStream is, OutputStream os)
                    throws Exception {
    
                GZIPOutputStream gos = new GZIPOutputStream(os);
    
                int count;
                byte data[] = new byte[BUFFER_LEN];
                while ((count = is.read(data, 0, BUFFER_LEN)) != -1) {
                    gos.write(data, 0, count);
                }
    
                gos.finish();
                gos.close();
            }
    
            private int getCompressedDataLength(byte[] data) {
                ByteArrayInputStream bais =new ByteArrayInputStream(data);
                ByteArrayOutputStream baos = new ByteArrayOutputStream();
    
                try {
                    compress(bais, baos);
                } catch (Exception e) {
                }
    
                return baos.toByteArray().length;
            }
    
            private void dumpDataLengthInfo(byte[] protobufData, String jsonData, byte[] flatbufData) {
                int compressedProtobufLength = getCompressedDataLength(protobufData);
                int compressedJSONLength = getCompressedDataLength(jsonData.getBytes());
                int compressedFlatbufLength = getCompressedDataLength(flatbufData);
                Log.i(TAG, String.format("%-120s", "Data length"));
                Log.i(TAG, String.format("%-20s%-20s%-20s%-20s%-20s%-20s", "Protobuf", "Protobuf (GZIP)",
                        "JSON", "JSON (GZIP)", "Flatbuf", "Flatbuf (GZIP)"));
                Log.i(TAG, String.format("%-20s%-20s%-20s%-20s%-20s%-20s",
                        String.valueOf(protobufData.length), compressedProtobufLength,
                        String.valueOf(jsonData.getBytes().length), compressedJSONLength,
                        String.valueOf(flatbufData.length), compressedFlatbufLength));
            }
    
            private void doEncodeTest(String[] names, int times) {
                long startTime = System.nanoTime();
                byte[] protobufData = AddressBookProtobuf.encodeTest(names, times);
                long protobufTime = System.nanoTime();
                protobufTime = protobufTime - startTime;
    
                startTime = System.nanoTime();
                String jsonData = AddressBookJson.encodeTest(names, times);
                long jsonTime = System.nanoTime();
                jsonTime = jsonTime - startTime;
    
                startTime = System.nanoTime();
                byte[] flatbufData = AddressBookFlatBuffers.encodeTest(names, times);
                long flatbufTime = System.nanoTime();
                flatbufTime = flatbufTime - startTime;
    
                dumpDataLengthInfo(protobufData, jsonData, flatbufData);
    
                Log.i(TAG, String.format("%-20s%-20s%-20s%-20s", "Encode Times", String.valueOf(times),
                        "Names Length", String.valueOf(names.length)));
    
                Log.i(TAG, String.format("%-20s%-20s%-20s%-20s%-20s%-20s",
                        "ProtobufTime", String.valueOf(protobufTime),
                        "JsonTime", String.valueOf(jsonTime),
                        "FlatbufTime", String.valueOf(flatbufTime)));
            }
    
            private void doEncodeTest10(int times) {
                doEncodeTest(TestUtils.sTestNames10, times);
            }
    
            private void doEncodeTest50(int times) {
                doEncodeTest(TestUtils.sTestNames50, times);
            }
    
            private void doEncodeTest100(int times) {
                doEncodeTest(TestUtils.sTestNames100, times);
            }
    
            private void doEncodeTest(int times) {
                doEncodeTest10(times);
                doEncodeTest50(times);
                doEncodeTest100(times);
            }
    
            private void doDecodeTest(String[] names, int times) {
                byte[] protobufBytes = AddressBookProtobuf.encodeTest(names);
                ByteArrayInputStream bais = new ByteArrayInputStream(protobufBytes);
                long startTime = System.nanoTime();
                AddressBookProtobuf.decodeTest(bais, times);
                long protobufTime = System.nanoTime();
                protobufTime = protobufTime - startTime;
    
                String jsonStr = AddressBookJson.encodeTest(names);
                startTime = System.nanoTime();
                AddressBookJson.decodeTest(jsonStr, times);
                long jsonTime = System.nanoTime();
                jsonTime = jsonTime - startTime;
    
                byte[] flatbufData = AddressBookFlatBuffers.encodeTest(names);
                startTime = System.nanoTime();
                AddressBookFlatBuffers.decodeTest(flatbufData, times);
                long flatbufTime = System.nanoTime();
                flatbufTime = flatbufTime - startTime;
    
                Log.i(TAG, String.format("%-20s%-20s%-20s%-20s", "Decode Times", String.valueOf(times),
                        "Names Length", String.valueOf(names.length)));
                Log.i(TAG, String.format("%-20s%-20s%-20s%-20s%-20s%-20s",
                        "ProtobufTime", String.valueOf(protobufTime),
                        "JsonTime", String.valueOf(jsonTime),
                        "FlatbufTime", String.valueOf(flatbufTime)));
            }
    
            private void doDecodeTest10(int times) {
                doDecodeTest(TestUtils.sTestNames10, times);
            }
    
            private void doDecodeTest50(int times) {
                doDecodeTest(TestUtils.sTestNames50, times);
            }
    
            private void doDecodeTest100(int times) {
                doDecodeTest(TestUtils.sTestNames100, times);
            }
    
            private void doDecodeTest(int times) {
                doDecodeTest10(times);
                doDecodeTest50(times);
                doDecodeTest100(times);
            }
    
            @Override
            protected Void doInBackground(Void... params) {
                TestUtils.initTest();
                doEncodeTest(5000);
    
                doDecodeTest(5000);
                return null;
            }
    
            @Override
            protected void onPostExecute(Void aVoid) {
                super.onPostExecute(aVoid);
            }
        }
    

    这里我们执行3组编码测试及3组解码测试。对于编码测试,第一组的单个数据中包含10个Person,第二组的包含50个,第三组的包含100个,然后对每个数据分别执行5000次的编码操作。

    对于解码测试,三组中单个数据同样包含10个Person、50个及100个,然后对每个数据分别执行5000次的解码码操作。

    在Galaxy Nexus的Android 4.4.4 CM平台上执行上述测试,最终得到如下结果:

    编码后数据长度对比 (Bytes)

    | Person个数 | Protobuf | Protobuf(GZIP) |JSON | JSON(GZIP)|Flatbuf | Flatbuf(GZIP) |
    | --------------|:--------------:|-------------------- --:|-----------:|------------------:|--------:|-------------------:|
    |10 |860 |288 |1703 |343 |1532 |513 |
    |50 |4300 |986 |8463 |1048 |7452 |1814 |
    |100 |8600 |1841 |16913 |1918 |14852 |3416 |

    相同的数据,经过编码,在压缩前JSON的数据最长,FlatBuffers的数据长度与JSON的短大概10 %,而Protobuf的数据长度则大概只有JSON的一半。而在用GZIP压缩后,Protobuf的数据长度与JSON的接近,FlatBuffers的数据长度则接近两者的两倍。

    编码性能对比 (S)

    Person个数 Protobuf JSON FlatBuffers
    10 6.000 8.952 12.464
    50 26.847 45.782 56.752
    100 50.602 73.688 108.426

    编码性能Protobuf相对于JSON有较大幅度的提高,而FlatBuffers则有较大幅度的降低。

    解码性能对比 (S)

    Person个数 Protobuf JSON FlatBuffers
    10 0.255 10.766 0.014
    50 0.245 51.134 0.014
    100 0.323 101.070 0.006

    解码性能方面,Protobuf相对于JSON,有着惊人的提升。Protobuf的解码时间几乎不随着数据长度的增长而有太大的增长,而JSON则随着数据长度的增加,解码所需要的时间也越来越长。而FlatBuffers则由于无需解码,在性能方面相对于前两者更有着非常大的提升。

    FlatBuffers 编码原理

    FlatBuffers的Java库只提供了如下的4个类:

    ./com/google/flatbuffers/Constants.java
    ./com/google/flatbuffers/FlatBufferBuilder.java
    ./com/google/flatbuffers/Struct.java
    ./com/google/flatbuffers/Table.java
    

    Constants 类定义FlatBuffers中可用的基本原始数据类型的长度:

    public class Constants {
        // Java doesn't seem to have these.
        /** The number of bytes in an `byte`. */
        static final int SIZEOF_BYTE = 1;
        /** The number of bytes in a `short`. */
        static final int SIZEOF_SHORT = 2;
        /** The number of bytes in an `int`. */
        static final int SIZEOF_INT = 4;
        /** The number of bytes in an `float`. */
        static final int SIZEOF_FLOAT = 4;
        /** The number of bytes in an `long`. */
        static final int SIZEOF_LONG = 8;
        /** The number of bytes in an `double`. */
        static final int SIZEOF_DOUBLE = 8;
        /** The number of bytes in a file identifier. */
        static final int FILE_IDENTIFIER_LENGTH = 4;
    }
    

    FlatBufferBuilder 用于FlatBuffers编码,它会将我们的结构化数据序列化为字节数组。我们借助于 FlatBufferBuilder 在 ByteBuffer 中放置基本数据类型的数据、数组、字符串及对象。ByteBuffer 用于处理字节序,在序列化时,它将数据按适当的字节序进行序列化,在发序列化时,它将多个字节转换为适当的数据类型。在 .fbs 文件中定义的 table 和 struct,为它们生成的Java 类会继承 TableStruct

    在反序列化时,输入的ByteBuffer数据被当作字节数组,Table提供了针对字节数组的操作,生成的Java类负责对这些数据进行解释。对于FlatBuffers编码的数据,无需进行解码,只需进行解释。在编译 .fbs 文件时,每个字段在这段数据中的位置将被确定。每个字段的类型及长度将被硬编码进生成的Java类。

    Struct 类的代码也比较简洁:

    package com.google.flatbuffers;
    
    import java.nio.ByteBuffer;
    
    /// @cond FLATBUFFERS_INTERNAL
    
    /**
     * All structs in the generated code derive from this class, and add their own accessors.
     */
    public class Struct {
      /** Used to hold the position of the `bb` buffer. */
      protected int bb_pos;
      /** The underlying ByteBuffer to hold the data of the Struct. */
      protected ByteBuffer bb;
    }
    

    整体的结构如下图:

    在序列化结构化数据时,我们首先需要创建一个 FlatBufferBuilder ,在这个对象的创建过程中会分配或从调用者那里获取 ByteBuffer,序列化的数据将保存在这个 ByteBuffer中:

       /**
        * Start with a buffer of size `initial_size`, then grow as required.
        *
        * @param initial_size The initial size of the internal buffer to use.
        */
        public FlatBufferBuilder(int initial_size) {
            if (initial_size <= 0) initial_size = 1;
            space = initial_size;
            bb = newByteBuffer(initial_size);
        }
    
       /**
        * Start with a buffer of 1KiB, then grow as required.
        */
        public FlatBufferBuilder() {
            this(1024);
        }
    
        /**
         * Alternative constructor allowing reuse of {@link ByteBuffer}s.  The builder
         * can still grow the buffer as necessary.  User classes should make sure
         * to call {@link #dataBuffer()} to obtain the resulting encoded message.
         *
         * @param existing_bb The byte buffer to reuse.
         */
        public FlatBufferBuilder(ByteBuffer existing_bb) {
            init(existing_bb);
        }
    
        /**
         * Alternative initializer that allows reusing this object on an existing
         * `ByteBuffer`. This method resets the builder's internal state, but keeps
         * objects that have been allocated for temporary storage.
         *
         * @param existing_bb The byte buffer to reuse.
         * @return Returns `this`.
         */
        public FlatBufferBuilder init(ByteBuffer existing_bb){
            bb = existing_bb;
            bb.clear();
            bb.order(ByteOrder.LITTLE_ENDIAN);
            minalign = 1;
            space = bb.capacity();
            vtable_in_use = 0;
            nested = false;
            finished = false;
            object_start = 0;
            num_vtables = 0;
            vector_num_elems = 0;
            return this;
        }
    
        static ByteBuffer newByteBuffer(int capacity) {
            ByteBuffer newbb = ByteBuffer.allocate(capacity);
            newbb.order(ByteOrder.LITTLE_ENDIAN);
            return newbb;
        }
    

    下面我们更详细地分析基本数据类型数据、数组及对象的序列化过程。ByteBuffer 为小尾端的。

    FlatBuffers编码基本数据类型

    FlatBuffer 的基本数据类型主要包括如下这些:

    Boolean
    Byte
    Short
    Int
    Long
    Float
    Double
    

    FlatBufferBuilder 提供了三组方法用于操作这些数据:

        public void putBoolean(boolean x);
        public void putByte   (byte    x);
        public void putShort  (short   x);
        public void putInt    (int     x);
        public void putLong   (long    x);
        public void putFloat  (float   x);
        public void putDouble (double  x);
    
        public void addBoolean(boolean x);
        public void addByte   (byte    x);
        public void addShort  (short   x);
        public void addInt    (int     x);
        public void addLong   (long    x);
        public void addFloat  (float   x);
        public void addDouble (double  x);
    
        public void addBoolean(int o, boolean x, boolean d);
        public void addByte(int o, byte x, int d);
        public void addShort(int o, short x, int d);
        public void addInt    (int o, int     x, int     d);
        public void addLong   (int o, long    x, long    d);
        public void addFloat  (int o, float   x, double  d);
        public void addDouble (int o, double  x, double  d);
    

    putXXX 那一组,直接地将一个数据放入 ByteBuffer 中,它们的实现基本如下面这样:

        public void putBoolean(boolean x) {
            bb.put(space -= Constants.SIZEOF_BYTE, (byte) (x ? 1 : 0));
        }
    
        public void putByte(byte x) {
            bb.put(space -= Constants.SIZEOF_BYTE, x);
        }
    
        public void putShort(short x) {
            bb.putShort(space -= Constants.SIZEOF_SHORT, x);
        }
    

    Boolean值会被先转为byte类型再放入 ByteBuffer。另外一点值得注意的是,数据是从 ByteBuffer 的结尾处开始放置的,space用于记录最近放入的数据的位置及剩余的空间。

    addXXX(XXX x) 那一组在放入数据之前会先做对齐处理,并在需要时扩展 ByteBuffer 的容量:

        static ByteBuffer growByteBuffer(ByteBuffer bb) {
            int old_buf_size = bb.capacity();
            if ((old_buf_size & 0xC0000000) != 0)  // Ensure we don't grow beyond what fits in an int.
                throw new AssertionError("FlatBuffers: cannot grow buffer beyond 2 gigabytes.");
            int new_buf_size = old_buf_size << 1;
            bb.position(0);
            ByteBuffer nbb = newByteBuffer(new_buf_size);
            nbb.position(new_buf_size - old_buf_size);
            nbb.put(bb);
            return nbb;
        }
    
       public void pad(int byte_size) {
           for (int i = 0; i < byte_size; i++) bb.put(--space, (byte) 0);
       }
    
        public void prep(int size, int additional_bytes) {
            // Track the biggest thing we've ever aligned to.
            if (size > minalign) minalign = size;
            // Find the amount of alignment needed such that `size` is properly
            // aligned after `additional_bytes`
            int align_size = ((~(bb.capacity() - space + additional_bytes)) + 1) & (size - 1);
            // Reallocate the buffer if needed.
            while (space < align_size + size + additional_bytes) {
                int old_buf_size = bb.capacity();
                bb = growByteBuffer(bb);
                space += bb.capacity() - old_buf_size;
            }
            pad(align_size);
        }
    
        public void addBoolean(boolean x) {
            prep(Constants.SIZEOF_BYTE, 0);
            putBoolean(x);
        }
    
        public void addInt(int x) {
            prep(Constants.SIZEOF_INT, 0);
            putInt(x);
        }
    

    对齐是数据存放的起始位置相对于ByteBuffer的结束位置的对齐,additional bytes被认为是不需要对齐的,且在必要的时候会在ByteBuffer可用空间的结尾处填充值为0的字节。在扩展 ByteBuffer 的空间时,老的ByteBuffer被放在新ByteBuffer的结尾处。

    addXXX(int o, XXX x, YYY y) 这一组方法在放入数据之后,会将 vtable 中对应位置的值更新为最近放入的数据的offset。

        public void addShort(int o, short x, int d) {
            if (force_defaults || x != d) {
                addShort(x);
                slot(o);
            }
        }
    
        public void slot(int voffset) {
            vtable[voffset] = offset();
        }
    

    后面我们在分析编码对象时再来详细地了解vtable。

    基本上,在我们的应用程序代码中不要直接调用这些方法,它们主要在构造对象时用于存储对象的基本数据类型字段。

    FlatBuffers编码数组

    编码数组的过程如下:

    Encode vector

    先执行 startVector(),这个方法会记录数组的长度,处理元素的对齐,准备足够的空间,并设置nested,用于指示记录的开始。
    然后逐个添加元素。
    最后 执行 endVector(),将nested复位,并记录数组的长度。

        public void startVector(int elem_size, int num_elems, int alignment) {
            notNested();
            vector_num_elems = num_elems;
            prep(SIZEOF_INT, elem_size * num_elems);
            prep(alignment, elem_size * num_elems); // Just in case alignment > int.
            nested = true;
        }
    
        public int endVector() {
            if (!nested)
                throw new AssertionError("FlatBuffers: endVector called without startVector");
            nested = false;
            putInt(vector_num_elems);
            return offset();
        }
    

    我们前面的AddressBook例子中有如下这样的生成代码:

      public static int createPersonVector(FlatBufferBuilder builder, int[] data) {
        builder.startVector(4, data.length, 4);
        for (int i = data.length - 1; i >= 0; i--) builder.addOffset(data[i]);
        return builder.endVector();
      }
    

    编码后的数组将有如下的内存分布:

    Encoded Vector

    其中的Vector Length为4字节的int型值。

    FlatBuffers编码字符串

    FlatBufferBuilder 创建字符串的过程如下:

        public int createString(CharSequence s) {
            int length = s.length();
            int estimatedDstCapacity = (int) (length * encoder.maxBytesPerChar());
            if (dst == null || dst.capacity() < estimatedDstCapacity) {
                dst = ByteBuffer.allocate(Math.max(128, estimatedDstCapacity));
            }
    
            dst.clear();
    
            CharBuffer src = s instanceof CharBuffer ? (CharBuffer) s :
                CharBuffer.wrap(s);
            CoderResult result = encoder.encode(src, dst, true);
            if (result.isError()) {
                try {
                    result.throwException();
                } catch (CharacterCodingException x) {
                    throw new Error(x);
                }
            }
    
            dst.flip();
            return createString(dst);
        }
    
        public int createString(ByteBuffer s) {
            int length = s.remaining();
            addByte((byte)0);
            startVector(1, length, 1);
            bb.position(space -= length);
            bb.put(s);
            return endVector();
        }
    
        public int createByteVector(byte[] arr) {
            int length = arr.length;
            startVector(1, length, 1);
            bb.position(space -= length);
            bb.put(arr);
            return endVector();
        }
    

    编码字符串的过程如下:

    1. 对字符串进行编码,比如 UTF-8 ,编码后的数据保存在另一个 ByteBuffer 中。
    2. 在可用空间的结尾处添加值为 0 的byte。
    3. 将第 1 步中创建的 ByteBuffer 作为一个字节数组添加到 FlatBufferBuilder 的 ByteBuffer 中。这里不是逐个元素,也就是字节,添加,而是将 ByteBuffer 整体一次性添加,以保证字符串中各个字节的相对顺序不会被颠倒过来,这一点与我们前面在AddressBook 中看到的稍有区别。

    编码后的字符串将有如下的内存分布:

    Encoded String

    FlatBuffers编码对象

    对象的编码与数组的编码有点类似。编码对象的过程为:

    1. 先执行 startObject(),创建 vtable并初始化,记录对象的字段个数及对象数据的起始位置,并设置nested,指示对象编码的开始。
    2. 然后为对象逐个添加每个字段的值。
    3. 最后执行 endObject() 结束对象的编码。
        public void startObject(int numfields) {
            notNested();
            if (vtable == null || vtable.length < numfields) vtable = new int[numfields];
            vtable_in_use = numfields;
            Arrays.fill(vtable, 0, vtable_in_use, 0);
            nested = true;
            object_start = offset();
        }
    
        public int endObject() {
            if (vtable == null || !nested)
                throw new AssertionError("FlatBuffers: endObject called without startObject");
            addInt(0);
            int vtableloc = offset();
            // Write out the current vtable.
            for (int i = vtable_in_use - 1; i >= 0 ; i--) {
                // Offset relative to the start of the table.
                short off = (short)(vtable[i] != 0 ? vtableloc - vtable[i] : 0);
                addShort(off);
            }
    
            final int standard_fields = 2; // The fields below:
            addShort((short)(vtableloc - object_start));
            addShort((short)((vtable_in_use + standard_fields) * SIZEOF_SHORT));
    
            // Search for an existing vtable that matches the current one.
            int existing_vtable = 0;
            outer_loop:
            for (int i = 0; i < num_vtables; i++) {
                int vt1 = bb.capacity() - vtables[i];
                int vt2 = space;
                short len = bb.getShort(vt1);
                if (len == bb.getShort(vt2)) {
                    for (int j = SIZEOF_SHORT; j < len; j += SIZEOF_SHORT) {
                        if (bb.getShort(vt1 + j) != bb.getShort(vt2 + j)) {
                            continue outer_loop;
                        }
                    }
                    existing_vtable = vtables[i];
                    break outer_loop;
                }
            }
    
            if (existing_vtable != 0) {
                // Found a match:
                // Remove the current vtable.
                space = bb.capacity() - vtableloc;
                // Point table to existing vtable.
                bb.putInt(space, existing_vtable - vtableloc);
            } else {
                // No match:
                // Add the location of the current vtable to the list of vtables.
                if (num_vtables == vtables.length) vtables = Arrays.copyOf(vtables, num_vtables * 2);
                vtables[num_vtables++] = offset();
                // Point table to current vtable.
                bb.putInt(bb.capacity() - vtableloc, offset() - vtableloc);
            }
    
            nested = false;
            return vtableloc;
        }
    

    结束对象编码的过程比较有意思:

    1. 在可用空间的结尾处添加值为 0 的int。
    2. 记录下当前的offset值 vtableloc,也就是 ByteBuffer中已经保存的数据的长度。
    3. 编码vtable。vtable用于记录对象每个字段的存储位置,在为对象添加字段时会被更新。在这里会用 vtableloc - vtable[i],找到每个对象的保存位置相对于对象起始位置的偏移,并将这个偏移量保存到ByteBuffer中。
    4. 记录对象所有字段的总长度,包含对象开始初值为0的int数据。
    5. 记录元数据的长度。这包括vtable的长度,记录 对象所有字段的总长度 的short型值,以及这个长度本身所消耗的存储空间。
    6. 查找是否有一个vtable与正在创建的这个一致。
    7. 找到了匹配的vtable,则清除创建的元数据。第 1 步中放0的那个位置的值,被更新为找到的vtable相对于对象的数据起始位置的偏移。
    8. 没有找到匹配的vtable。记下vtable的位置,第 1 步中放0的那个位置的值,被更新为新创建的vtable相对于对象的数据起始位置的偏移。

    就像C++中的vtable,这里的vtable也是针对类创建的,而不是对象。

    编码后的对象有如下的内存分布:

    Encoded

    图中值为0的那个位置的值实际不是0,它指向vtable,图中是指向在创建对象时创建的vtable,但它也可以相同类已经存在的vtable。

    结束编码

    编码数据之后,需要执行 FlatBufferBuilder 的 finish() 结束编码:

        public int offset() {
            return bb.capacity() - space;
        }
    
        public void addOffset(int off) {
            prep(SIZEOF_INT, 0);  // Ensure alignment is already done.
            assert off <= offset();
            off = offset() - off + SIZEOF_INT;
            putInt(off);
        }
    
        public void finish(int root_table) {
            prep(minalign, SIZEOF_INT);
            addOffset(root_table);
            bb.position(space);
            finished = true;
        }
    
        public void finish(int root_table, String file_identifier) {
            prep(minalign, SIZEOF_INT + FILE_IDENTIFIER_LENGTH);
            if (file_identifier.length() != FILE_IDENTIFIER_LENGTH)
                throw new AssertionError("FlatBuffers: file identifier must be length " +
                                         FILE_IDENTIFIER_LENGTH);
            for (int i = FILE_IDENTIFIER_LENGTH - 1; i >= 0; i--) {
                addByte((byte)file_identifier.charAt(i));
            }
            finish(root_table);
        }
    

    这个方法主要是记录根对象的位置。给 finish() 传入的的根对象的位置是相对于ByteBuffer结尾处的偏移,但是在 addOffset() 中,这个偏移会被转换为相对于整个数据块开始处的偏移。计算off值时,最后加的SIZEOF_INT是要给后面放入的off留出空间。

    整个编码后的数据有如下的内存分布:

    Encoded data

    FlatBuffers 解码原理

    这里我们通过一个生成的比较简单的类 PhoneNumber 来了解FlatBuffers的解码。

        public static PhoneNumber getRootAsPhoneNumber(ByteBuffer _bb) {
            return getRootAsPhoneNumber(_bb, new PhoneNumber());
        }
    
        public static PhoneNumber getRootAsPhoneNumber(ByteBuffer _bb, PhoneNumber obj) {
            _bb.order(ByteOrder.LITTLE_ENDIAN);
            return (obj.__assign(_bb.getInt(_bb.position()) + _bb.position(), _bb));
        }
    
        public void __init(int _i, ByteBuffer _bb) {
            bb_pos = _i;
            bb = _bb;
        }
    
        public PhoneNumber __assign(int _i, ByteBuffer _bb) {
            __init(_i, _bb);
            return this;
        }
    

    创建对象的时候,会初始化 bb 为保存有对象数据的ByteBuffer,bb_pos 为对象数据在ByteBuffer中的偏移。在 getRootAsPhoneNumber() 中会从 ByteBuffer的position处获取根对象的偏移,并加上position,以计算出对象在ByteBuffer中的位置。

    通过生成的PhoneNumber类中的number()、type()两个方法来看, FlatBuffers 中是怎么访问成员的:

        public String number() {
            int o = __offset(4);
            return o != 0 ? __string(o + bb_pos) : null;
        }
    
        public int type() {
            int o = __offset(6);
            return o != 0 ? bb.getInt(o + bb_pos) : 0;
        }
    

    过程大体为:

    1. 获得对应字段在对象中的偏移位置。
    2. 根据字段的偏移位置及对象的原点位置计算出对象的位置。
    3. 通过ByteBuffer等提供的一些方法得到字段的值。

    计算字段相对于对象原点位置的偏移的方法 __offset(4) 在com.google.flatbuffers.Table中定义:

      protected int __offset(int vtable_offset) {
        int vtable = bb_pos - bb.getInt(bb_pos);
        return vtable_offset < bb.getShort(vtable) ? bb.getShort(vtable + vtable_offset) : 0;
      }
    

    在这个方法中,先是根据对象的原点处保存的vtable的偏移得到vtable的位置,然后在从vtable中获取对象字段相对于对象原点位置的偏移。

    得到字符串字段的过程如下:

      protected String __string(int offset) {
        CharsetDecoder decoder = UTF8_DECODER.get();
        decoder.reset();
    
        offset += bb.getInt(offset);
        ByteBuffer src = bb.duplicate().order(ByteOrder.LITTLE_ENDIAN);
        int length = src.getInt(offset);
        src.position(offset + SIZEOF_INT);
        src.limit(offset + SIZEOF_INT + length);
    
        int required = (int)((float)length * decoder.maxCharsPerByte());
        CharBuffer dst = CHAR_BUFFER.get();
        if (dst == null || dst.capacity() < required) {
          dst = CharBuffer.allocate(required);
          CHAR_BUFFER.set(dst);
        }
    
        dst.clear();
    
        try {
          CoderResult cr = decoder.decode(src, dst, true);
          if (!cr.isUnderflow()) {
            cr.throwException();
          }
        } catch (CharacterCodingException x) {
          throw new Error(x);
        }
    
        return dst.flip().toString();
      }
    

    了解了前面字符串编码的过程之后,相信也不难了解这里解码字符串的过程,这里完全是那个过程的相反过程。

    如我们所见,FlatBuffers编码后的数据其实无需解码,只要通过生成的Java类对这些数据进行解释就可以了。

    FlatBuffers的原理大体如此。

    Done。

    相关文章

      网友评论

      本文标题:在Android中使用FlatBuffers

      本文链接:https://www.haomeiwen.com/subject/yjadmttx.html