美文网首页机器学习
逻辑回归实现-R

逻辑回归实现-R

作者: 灵妍 | 来源:发表于2018-03-09 22:35 被阅读6次

    英语学习:
    binomial:二项式
    程序步骤:
    数据预处理(导入数据,选取所需数据,划分测试集和训练集),拟合模型,预测测试集,分析混淆矩阵,可视化分类器和训练集,可视化分类器和测试集。
    逻辑回归的本质是得到线性回归模型,然后分类,这一点在R的编程中是体现了的,按照0.5划分,但在Python中是自动划分的
    程序:

    # Logistic Regression
    
    # Importing the dataset
    dataset = read.csv('Social_Network_Ads.csv')
    dataset = dataset[3:5]
    
    # Splitting the dataset into the Training set and Test set
    # install.packages('caTools')
    library(caTools)
    set.seed(123)
    split = sample.split(dataset$Purchased, SplitRatio = 0.75)
    training_set = subset(dataset, split == TRUE)
    test_set = subset(dataset, split == FALSE)
    
    # Feature Scaling
    training_set[, 1:2] = scale(training_set[, 1:2])
    test_set[, 1:2] = scale(test_set[, 1:2])  
    
    # Fitting Logistic Regression to the Training set
    classifier = glm(formula = Purchased ~ .,
                     family= binomial,
                     data= training_set)
    
    # Predicting the Test set results
    prob_pred=predict(classifier, type = 'response', newdata=test_set[-3])
    y_pred=ifelse(prob_pred>0.5, 1, 0)
    
    # Making the Confusion Matrix
    cm = table(test_set[,3], y_pred)
    
    # Visualising the Training set results
    # install.packages(ElemStatLearn)
    library(ElemStatLearn)
    set = training_set
    X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.0075)
    X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.0075)
    grid_set = expand.grid(X1, X2)
    colnames(grid_set) = c('Age', 'EstimatedSalary')
    prob_set = predict(classifier, type = 'response', newdata = grid_set)
    y_grid = ifelse(prob_set > 0.5, 1, 0)
    plot(set[, -3],
         main = 'Classifier (Training set)',
         xlab = 'Age', ylab = 'Estimated Salary',
         xlim = range(X1), ylim = range(X2))
    contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
    points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))
    points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))
    
    # Visualising the Test set results
    #install.packages()
    library(ElemStatLearn)
    set = test_set
    X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01)
    X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01)
    grid_set = expand.grid(X1, X2)
    colnames(grid_set) = c('Age', 'EstimatedSalary')
    prob_set = predict(classifier, type = 'response', newdata = grid_set)
    y_grid = ifelse(prob_set > 0.5, 1, 0)
    plot(set[, -3],
         main = 'Classifier (Test set)',
         xlab = 'Age', ylab = 'Estimated Salary',
         xlim = range(X1), ylim = range(X2))
    contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
    points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))
    points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))
    
    测试集.PNG 训练集.PNG 混淆矩阵.PNG

    相关文章

      网友评论

        本文标题:逻辑回归实现-R

        本文链接:https://www.haomeiwen.com/subject/yulzxftx.html