开篇
-
CountDownLatch是一个同步工具类,用来协调多个线程之间的同步,或者说起到线程之间的通信(而不是用作互斥的作用)。
-
CountDownLatch能够使一个线程在等待另外一些线程完成各自工作之后,再继续执行。使用一个计数器进行实现。计数器初始值为线程的数量。当每一个线程完成自己任务后,计数器的值就会减一。当计数器的值为0时,表示所有的线程都已经完成了任务,然后在CountDownLatch上等待的线程就可以恢复执行任务。
-
CountDownLatch是一次性的,计数器的值只能在构造方法中初始化一次,之后没有任何机制再次对其设置值,当CountDownLatch使用完毕后,它不能再次被使用。
CountDownLatch的用法
-
CountDownLatch典型用法1:某一线程在开始运行前等待n个线程执行完毕。将CountDownLatch的计数器初始化为n new CountDownLatch(n) ,每当一个任务线程执行完毕,就将计数器减1 countdownlatch.countDown(),当计数器的值变为0时,在CountDownLatch上 await() 的线程就会被唤醒。一个典型应用场景就是启动一个服务时,主线程需要等待多个组件加载完毕,之后再继续执行。
-
CountDownLatch典型用法2:实现多个线程开始执行任务的最大并行性。注意是并行性,不是并发,强调的是多个线程在某一时刻同时开始执行。类似于赛跑,将多个线程放到起点,等待发令枪响,然后同时开跑。做法是初始化一个共享的CountDownLatch(1),将其计数器初始化为1,多个线程在开始执行任务前首先 coundownlatch.await(),当主线程调用 countDown() 时,计数器变为0,多个线程同时被唤醒。
CountDownLatch的demo
public class CountDownLatchDemo {
public static void main(String[] args) throws InterruptedException{
CountDownLatch countDownLatch = new CountDownLatch(2){
@Override
public void await() throws InterruptedException {
super.await();
System.out.println(Thread.currentThread().getName() + " count down is ok");
}
};
Thread thread1 = new Thread(new Runnable() {
@Override
public void run() {
//do something
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " is done");
countDownLatch.countDown();
}
}, "thread1");
Thread thread2 = new Thread(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " is done");
countDownLatch.countDown();
}
}, "thread2");
thread1.start();
thread2.start();
countDownLatch.await();
}
CountDownLatch的类定义
- CountDownLatch内部包含Sync类。
- CountDownLatch内部包含Sync类的对象sync。
- Sync类继承自AQS(神奇的AQS),构造函数设置AQS的state值为等待值。
public class CountDownLatch {
private static final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 4982264981922014374L;
Sync(int count) {
setState(count);
}
int getCount() {
return getState();
}
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}
protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
}
private final Sync sync;
public CountDownLatch(int count) {
if (count < 0) throw new IllegalArgumentException("count < 0");
this.sync = new Sync(count);
}
}
CountDownLatch的等待过程
- CountDownLatch通过await()进入等待。
- CountDownLatch通过await(long timeout, TimeUnit unit)进入超时等待。
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
public boolean await(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
CountDownLatch的await()过程
- await()通过sync.acquireSharedInterruptibly()获锁。
- acquireSharedInterruptibly通过tryAcquireShared()尝试获锁。
- tryAcquireShared()判断获锁成功与否的依据是AQS的state的值是否为零。
- 获锁失败后通过doAcquireSharedInterruptibly()进入锁等待队列CLH。
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
// 尝试获锁失败
if (tryAcquireShared(arg) < 0)
//
doAcquireSharedInterruptibly(arg);
}
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
CountDownLatch的await(long timeout, TimeUnit unit)过程
- await(long timeout, TimeUnit unit)通过sync.tryAcquireSharedNanos()获锁。
- tryAcquireSharedNanos()通过doAcquireSharedNanos()尝试获锁。
- tryAcquireShared()判断获锁成功与否的依据是AQS的state的值是否为零。
- 获锁失败后通过doAcquireSharedNanos()进入锁等待队列CLH,和doAcquireSharedInterruptibly()方法相比增加了超时检测机制,通过LockSupport.parkNanos()实现超时。
public boolean await(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
return tryAcquireShared(arg) >= 0 ||
doAcquireSharedNanos(arg, nanosTimeout);
}
private boolean doAcquireSharedNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (nanosTimeout <= 0L)
return false;
final long deadline = System.nanoTime() + nanosTimeout;
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return true;
}
}
nanosTimeout = deadline - System.nanoTime();
if (nanosTimeout <= 0L)
return false;
if (shouldParkAfterFailedAcquire(p, node) &&
nanosTimeout > spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if (Thread.interrupted())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
CountDownLatch的唤醒过程
- CountDownLatch通过sync.releaseShared(1)释放锁实现state的递减
- tryReleaseShared()方法判断锁状态state==0,递减后值为0说明锁已经被释放。
- releaseShared()释放锁成功后通过doReleaseShared()方法唤醒所有等待线程。
- doReleaseShared()唤醒锁的过程是一个传播性的唤醒,通过线程A唤醒线程B,然后由线程B唤醒线程C的传播性依次唤醒所有等待线程。
public void countDown() {
sync.releaseShared(1);
}
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
protected boolean tryReleaseShared(int releases) {
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
private void doReleaseShared() {
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}
总结
CountDownLatch的工作原理,总结起来就两点(基于AQS实现):
- 初始化锁状态的值为需要等待的线程数。
- 判断锁状态是否已经释放,如果锁未释放所有等待锁的线程就会进入等待的CLH队列。
- 如果锁状态已经释放,那么就会通过传播性唤醒所有的等待线程。
网友评论